- 人工智能学习资源
Hemy08
人工智能学习
无机器学习基础:https://www.coursera.org/learn/machine-learning有机器学习基础:MachineYearning深度学习入门:https://www.coursera.org/learn/neural-networks-deep-learning
- Pytorch深度学习入门基础(二):python 编辑器的选择、 安装及配置( pycharm、 jupyter)
慕奕宸
深度学习深度学习pythonpytorch
目录一、下载pycharm1.下载pycharm2.pycharm配置3.检查pycharm环境是否配置好二、Jupyter安装三、常见问题:1.为什么torch.cuda.isavailable()为False2.无法定位程序输入点现在来开一个专栏,关于学习Pytorch深度学习的入门基础,分为好几期,我会慢慢更新,希望大家可以互相支持一下,相互学习,相互进步!下面是这个专栏的所有内容,大家可以
- pytorch深度学习入门(12)之-神经网络导出onnx模型部署与应用
码农呆呆
深度学习深度学习pytorch神经网络
概述:ONNX(OpenNeuralNetworkExchange)是一种开放神经网络交换格式,它使得不同深度学习框架(如TensorFlow、PyTorch、MXNet等)之间的互操作成为可能。ONNX提供了一种标准化的方式,可以将训练好的模型导出并转换为ONNX格式,然后可以在其他支持ONNX的框架或工具中进行部署和推理。ONNX的主要优势在于它促进了深度学习模型在不同平台之间的互操作性和可移
- AI人工智能深度学习入门指南:从基础到实践_副本
AI大模型应用实战
C人工智能深度学习ai
AI人工智能深度学习入门指南:从基础到实践关键词:人工智能、机器学习、深度学习、神经网络、梯度下降、反向传播、实战案例摘要:本文是为零基础或初级学习者打造的深度学习入门指南。我们将从“人工智能-机器学习-深度学习”的关系讲起,用“教机器人认猫”的故事串联核心概念,结合生活比喻(如“多层蛋糕”解释神经网络)、数学公式(如梯度下降的“下山游戏”)和Python实战代码(用Keras实现手写数字识别),
- 深度学习入门指南:从基础概念到代码实践
软考和人工智能学堂
人工智能#深度学习Python开发经验深度学习人工智能
深度学习入门指南:从基础概念到代码实践1.深度学习概述深度学习是机器学习的一个分支,它通过模拟人脑神经元的工作方式,构建多层次的神经网络模型来处理复杂的数据模式。与传统机器学习方法相比,深度学习能够自动从原始数据中学习特征表示,无需过多的人工特征工程。深度学习已经在计算机视觉、自然语言处理、语音识别等领域取得了突破性进展。例如,ImageNet竞赛中深度学习模型的识别准确率已经超过人类水平,而GP
- 深度学习入门(2):alexnet
qq_776882262
深度学习人工智能
引言主要讲下alexnet里的几个方法,后面深度学习的代码部分应该都是借用别人的,整体安排是从简单到难。本篇借鉴Pytorch之AlexNet花朵分类_基于alexnet的花卉分类识别系统-CSDN博客,如果需要学习直接参考这篇就好了,本文只是作为本人复习记录。正文AlexNet是深度学习时代的开端,它用一场决定性的胜利,证明了深度卷积神经网络在计算机视觉中的巨大潜力。单层alexnet网络架构:
- 深度学习入门(3):vgg16
qq_776882262
深度学习人工智能
引言相比于alexnet,vgg16进一步优化了这个黑盒模型,用实验的方式证明了哪些模块有效,哪些模块对检测效果提升有限。奠基了卷积神经网络一些基础的模块。本文参考pytorch实战7:手把手教你基于pytorch实现VGG16_vgg16pytorch-CSDN博客,此处只做记录供本人复习记录。正文VGG16创新点:1.使用小卷积核堆叠代替大卷积核VGG16采用多个连续的3×3小卷积核堆叠,而不
- 深度学习入门:Python搭建简单神经网络模型
缑宇澄
python
在人工智能浪潮中,深度学习凭借强大的特征提取与模式识别能力成为核心技术,而神经网络则是深度学习的基石。从图像识别到自然语言处理,神经网络以独特的结构和学习机制,让计算机能够模拟人类大脑处理复杂信息的过程。本文将带领你从基础理论出发,使用Python和Keras库搭建一个简单的神经网络模型,开启深度学习的探索之旅。一、神经网络基础理论1.1神经元与网络结构神经网络的基本单元是人工神经元(又称节点或单
- 【大模型入门指南 10】大模型推理部署:vLLM和llama.cpp
青松ᵃⁱ
LLM入门系列llama
【大模型入门指南】系列文章:【大模型入门指南01】深度学习入门【大模型入门指南02】LLM大模型基础知识【大模型入门指南03】提示词工程【大模型入门指南04】Transformer结构【大模型入门指南05】LLM技术选型【大模型入门指南06】LLM数据预处理【大模型入门指南07】量化技术解析【大模型入门指南08】微调和分布式训练【大模型入门指南09】LLM和多模态模型高效推理实践【大模型入门指南1
- 深度学习入门:从零搭建你的第一个神经网络
layneyao
ai深度学习神经网络人工智能
深度学习入门:从零搭建你的第一个神经网络系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录深度学习入门:从零搭建你的第一个神经网络摘要引言第一章:神经网络基础原理1.1神经元模型1.2反向传播算法1.3激活函数对比第二章:开发环境搭建指南2.1硬件要求2.2软件环境2.2.1Anaconda配置2.2.2PyTorch安装2.2.3TensorFlo
- 深度学习入门:如何从零开始搭建自己的深度学习模型?
AI天才研究院
Python实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介深度学习(DeepLearning)近几年已经成为人们关注的热点话题。从2012年的ImageNet竞赛开始,激起了众多研究者的兴趣,也带来了越来越多的应用场景。随着技术的飞速发展,深度学习已经成为了各个领域最具潜力的技术。作为一名AI科研工作者,了解、掌握深度学习相关知识可以帮助你更好地理解并解决实际问题。本文将全面介绍深度学习的基础知识、技术要点及其应用。文
- 第6篇:深度学习入门——神经网络基础
CarlowZJ
AI+Python深度学习神经网络人工智能
目录一、前言二、概念讲解(一)深度学习:人工智能皇冠上的明珠(二)神经网络:深度学习的微观世界三、神经网络的基本组件:构建智能的积木(一)神经元:智能的基本单元(二)权重与偏置:连接的智慧(三)激活函数:非线性的魔法(四)损失函数:衡量差距的标尺(五)优化器:攀登优化高峰的向导四、前向传播与反向传播:神经网络的智慧流转(一)前向传播:信息的逐层传递(二)反向传播:误差的逆向追溯五、代码示例:搭建你
- 【深度学习入门篇 ②】Pytorch完成线性回归!
小森( ﹡ˆoˆ﹡ )
深度学习入门篇线性回归算法回归
嗨,大家好,我是小森(﹡ˆoˆ﹡)!易编橙·终身成长社群创始团队嘉宾,橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官、CSDN人工智能领域优质创作者。易编橙:一个帮助编程小伙伴少走弯路的终身成长社群!上一部分我们自己通过torch的方法完成反向传播和参数更新,在Pytorch中预设了一些更加灵活简单的对象,让我们来构造模型、定义损失,优化损失等;那么接下来,我们一起来了解一下其中常用的API
- day33 python深度学习入门
xiaohanbao09
pynotepython深度学习机器学习pandas人工智能学习
目录深度学习入门:PyTorch实现鸢尾花分类一、环境搭建1.创建Python环境2.安装必要的库3.检查CUDA环境二、数据准备1.加载数据集2.数据预处理3.转换为PyTorch张量三、模型构建1.定义模型结构2.定义损失函数和优化器四、模型训练1.训练过程2.训练结果五、结果可视化六、总结在深度学习的旅程中,神经网络是不可或缺的核心工具之一。今天,我将通过一个简单的项目,使用PyTorch框
- 遥感深度学习——基于deeplabv3+和GID数据集(1)
全域智图
深度学习人工智能
博主最近准备进行深度学习入门,因为是做遥感方向的,经过多重考虑,算法最后选择了deeplabv3+。DeepLabV3+是由谷歌提出的一种用于图像语义分割的深度学习模型。它在DeepLabV3的基础上,加入了编码器-解码器结构,以提高分割结果的边缘细节和空间分辨率。以下是DeepLabV3+的主要特点:编码器-解码器结构:编码器部分提取图像的高层次语义特征,解码器部分逐步恢复图像的空间细节,提高分
- 深度学习入门:从理论到实战的详细指南
人工智能教程
深度学习人工智能算法目标跟踪机器学习YOLO线性回归
的高效学习和理解。对于初学者来说,深度学习的学习曲线可能会显得有些陡峭,但只要掌握正确的方法和步骤,就能轻松入门。本文将为你提供一份从理论到实战的详细指南,帮助你快速掌握深度学习的核心要点。一、深度学习是什么?(一)定义深度学习是机器学习的一个子领域,它通过构建多层的神经网络来学习数据中的复杂模式。与传统的机器学习算法相比,深度学习能够自动提取数据的特征,而不需要人工设计复杂的特征工程。这种自动特
- 深度学习入门:基于 Python 的理论与实现笔记
u013244720
深度学习python笔记
深度学习入门:基于Python的理论与实现笔记在VSCode中运行代码替换库搜索路径#sys.path.append(os.pardir)#为了导入父目录而进行的设定sys.path.append(os.getcwd())替换文件路径#withopen("sample_weight.pkl",'rb')asf:withopen(os.getcwd()+"/ch03/sample_weight.pk
- pytorch深度学习入门(15)之-使用onnx模型量化
码农呆呆
深度学习人工智能pytorch深度学习python神经网络
量化ONNX模型内容量化概述ONNX量化表示格式量化ONNX模型基于变压器的模型Transformer基于变压器的模型GPU上的量化常问问题量化概述ONNX运行时中的量化是指ONNX模型的8位线性量化。在量化期间,浮点值被映射到以下形式的8位量化空间:val_fp32=scale*(val_quantized-zero_point)scale是一个正实数,用于将浮点数映射到量化空间。计算方法如下:
- 深度学习入门--基于Python的理论与实现--Python入门
语文天才高斯
python开发语言人工智能深度学习
第一章Python入门1.1Python是什么Python是一种高级编程语言,由GuidovanRossum于1989年创建,并在1991年正式发布。Python具有以下特点:易读易写:Python语法简洁,代码可读性强,使开发者能够更专注于问题本身。跨平台:Python可以在Windows、Linux和macOS上运行,具有良好的可移植性。丰富的库:Python生态系统中包含大量的第三方库,如N
- 【深度学习入门_NLP自然语言处理】序章
沉默的舞台剧
AI深度学习自然语言处理人工智能
本部分开始深度学习第二大部分NLP章节学习,找了好多资料,终于明确NLP的学习目标了,介于工作之余学习综合考量,还是决定以视频学习为主+后期自主实践为主吧。分享一个总图,其实在定位的时候很迷茫,单各章节领域其实都是很大的范畴,每个部分都是需要专精的,所以在做计划的时候很头大…千里之行始于足下吧,话不多数,直接上NLP的学习应用目标:学习教程的话参照B站实战结合的这个教程【2025NLP自然语言处理
- 具身智能零碎知识点(三):深入解析 “1D UNet”:结构、原理与实战
墨绿色的摆渡人
具身智能零碎知识点pytorch人工智能pythontransformer具身智能
深入解析“1DUNet”:结构、原理与实战【深度学习入门】1DUNet详解:结构、原理与实战指南一、1DUNet是什么?二、核心结构与功能1.整体架构2.编码器(Encoder)3.解码器(Decoder)4.跳跃连接(SkipConnection)5.瓶颈层(Bottleneck)三、数学原理与数值示例1.1D卷积运算2.编码-解码流程四、PyTorch代码实现1.完整模型代码2.使用示例五、实
- 使用Python学习AI的学习攻略
liushangzaibeijing
AI学习python学习人工智能
基于python的AI学习一、夯实基础二、数学基础三、机器学习基础四、深度学习入门五、进阶学习六、学习资源推荐七、实践项目一、夯实基础对于已经掌握Python基础语法的学习者来说,进一步利用Python学习AI需要夯实以下基础:变量和数据类型:包括整数、浮点数、字符串、列表、字典、元组等。条件语句和循环:熟练使用if-else语句和for、while循环。函数:理解函数的定义、调用以及参数传递。面
- 深度学习入门(三):神经网络的学习
WhyNot?
深度学习深度学习神经网络学习
文章目录前言人类思考VS机器学习VS深度学习基础术语损失函数常用的损失函数均方误差MSE(MeanSquareError)交叉熵误差(CrossEntropyError)mini-batch学习为何要设定损失函数数值微分神经网络学习算法的实现两层神经网络的类参考资料前言机器学习的过程通常分为学习(从训练数据中自动获取权重参数的过程)和推理(利用学习到的权重参数对新的数据进行预测)两个环节。本文将主
- 深度学习入门:从神经网络基础到简单实现
Evaporator Core
人工智能#深度学习Python开发经验深度学习神经网络人工智能
深度学习作为人工智能领域最令人兴奋的技术之一,已经在图像识别、自然语言处理、语音识别等多个领域取得了突破性进展。本文将深入浅出地介绍深度学习的基本概念,并通过Python代码实现一个简单的神经网络模型,帮助读者建立直观理解并迈出实践第一步。神经网络的基本原理神经网络的核心思想源自对人类大脑工作方式的简化模拟。想象一下,当你第一次学习骑自行车时,大脑会不断接收来自视觉、平衡感等多方面的信号,经过一系
- PyTorch深度学习入门与实战教程
openbiox
本文还有配套的精品资源,点击获取简介:深度学习是AI的核心技术,基于神经网络对数据建模以实现学习和预测。PyTorch是一个灵活易用的开源深度学习框架,适合初学者和研究人员进行实验开发。教程涵盖了从基础概念到模型训练、验证、测试的完整流程,包括张量操作、动态计算图、数据预处理、神经网络构建、优化器使用、训练循环、模型保存加载以及CNN和RNN等关键网络结构的应用实践。通过实例项目如文本分类、图像识
- AI入门书籍推荐
撬动未来的支点
深度学习深度学习人工智能
漫画机械学习入门((日)大关真之戴凤智张鸿涛孟宇(译))深度学习入门:基于Python的理论与实现深度学习的数学:使用Python语言[转换版]([美]罗纳德·T.纽塞尔)
- 手写数字识别(深度学习小实践)
我是来学习的你们要干什么
深度学习人工智能pycharmpython机器学习神经网络
小白学习ing文章目录前言一、神经网络学习与实践1.学习2.推理二、手写数字识别1、读入mnist数据集(学习)2、神经网络的推理改进→批处理前言非常简单的深度学习小实践,没有用框架,仅使用简单的Python。参考书籍《深度学习入门:基于Python的理论与实现》一、神经网络学习与实践1.学习训练数据进行权重参数的学习2.推理使用学习到的参数,对输入数据进行分类二、手写数字识别1、读入mnist数
- 计算机视觉深度学习入门(4)
yyc_audio
计算机视觉人工智能计算机视觉深度学习神经网络
在小型数据集上从头开始训练一个卷积神经网络利用少量数据来训练图像分类模型,这是一种很常见的情况。如果你从事与计算机视觉相关的职业,那么很可能会在实践中遇到这种情况。“少量”样本既可能是几百张图片,也可能是上万张图片。我们来看一个实例——猫狗图片分类,数据集包含5000张猫和狗的图片(2500张猫的图片,2500张狗的图片)。我们将2000张图片用于训练,1000张用于验证,2000张用于测试。将介
- Python第十六课:深度学习入门 | 神经网络解密
程之编
Python全栈通关秘籍python神经网络青少年编程
本节目标理解生物神经元与人工神经网络的映射关系掌握激活函数与损失函数的核心作用使用Keras构建手写数字识别模型可视化神经网络的训练过程掌握防止过拟合的基础策略一、神经网络基础(大脑的数字化仿生)1.神经元对比生物神经元人工神经元树突接收信号输入层接收特征数据细胞体整合信号加权求和(∑(权重×输入)+偏置)轴突传递电信号激活函数处理输出2.核心组件解析激活函数:神经元的"开关"(如ReLU:max
- 大模型学习路线与资源推荐
数字化转型2025
AI投资人工智能
以下是基于多篇参考资料整理的大模型学习路线,涵盖从基础到进阶的完整学习路径,帮助您系统掌握大模型核心技术并应用于实际场景:一、基础阶段:构建核心知识体系编程与数学基础编程语言:优先学习Python,掌握其语法、数据结构及常用库(如NumPy、Pandas、PyTorch)37。数学基础:线性代数、概率论与统计学、微积分是理解模型原理的基石,需重点掌握矩阵运算、概率分布等概念39。深度学习入门神经网
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s