《Hands-on ML with Scikit-Learn,Keras&TensorFlow》读书笔记-第一章

读书笔记

  • Example1 scikit-learn线性模型

Example1 scikit-learn线性模型

import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sklearn.linear_model

# Load the data
oecd_bli = pd.read_csv(datapath + "oecd_bli_2015.csv", thousands=',')
gdp_per_capita = pd.read_csv(datapath + "gdp_per_capita.csv",thousands=',',delimiter='\t',
                             encoding='latin1', na_values="n/a")

# Prepare the data
country_stats = prepare_country_stats(oecd_bli, gdp_per_capita)
X = np.c_[country_stats["GDP per capita"]]
y = np.c_[country_stats["Life satisfaction"]]

# Visualize the data
country_stats.plot(kind='scatter', x="GDP per capita", y='Life satisfaction')
plt.show()

# Select a linear model
model = sklearn.linear_model.LinearRegression()

# Train the model
model.fit(X, y)

# Make a prediction for Cyprus
X_new = [[22587]]  # Cyprus' GDP per capita
print(model.predict(X_new)) # outputs [[ 5.96242338]]

总结

  1. 选择学习数据
  2. 选择一个model
  3. 使用training data训练model(机器学习算法搜索使成本函数最小化的模型参数值)
  4. 使用模型对新的data做出预测

你可能感兴趣的:(Hands,on,ML读书笔记)