最近在看机器学习实战这本书,第二章KNN算法,照着书上的代码敲了一遍,python+numpy库函数,感觉用起来还是不错的,附上KNN算法代码
from numpy import *
from os import *
import operator
def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels
def classify0(inx,dataSet,labels,k):
dataSetSize=dataSet.shape[0]
diffMat=tile(inx,(dataSetSize,1))-dataSet
sqDiffMat=diffMat**2
sqDistances=sqDiffMat.sum(axis=1)
distances=sqDistances**0.5
sortedDistIndicies=distances.argsort()
classCount={}
for i in range(k):
voteIlabel=labels[sortedDistIndicies[i]]
classCount[voteIlabel]=classCount.get(voteIlabel,0)+1
sortedClassCount=sorted(classCount.iteritems(),key=operator.itemgetter(1),reverse=True)
return sortedClassCount[0][0]
def file2matrix(filename):
fr=open(filename)
arrayOlines=fr.readlines()
numberofLines=len(arrayOlines)
returnMat=zeros((numberofLines,3))
classLabelVector=[]
index=0
for line in arrayOlines:
line=line.strip()
listFormLine=line.split('\t')
returnMat[index,:]=listFormLine[0:3]
classLabelVector.append(int(listFormLine[-1]))
index+=1
return returnMat,classLabelVector
def autoNorm(dataSet):
minVals=dataSet.min(0)
maxVals=dataSet.max(0)
ranges=maxVals-minVals
normDataSet=zeros(shape(dataSet))
m=dataSet.shape[0]
normDataSet=dataSet-tile(minVals,(m,1))
normDataSet=normDataSet/tile(ranges,(m,1))
return normDataSet,ranges,minVals
def datingClassTest():
hoRatio=0.10
datingDataMat,datingLabels=file2matrix('datingTestSet2.txt')
normMat,ranges,minVals=autoNorm(datingDataMat)
m=normMat.shape[0]
numTestVecs=int(m*hoRatio)
errorCount=0.0
for i in range(numTestVecs):
classifierResult=classify0(normMat[i,:],normMat[numTestVecs:m,:],\
datingLabels[numTestVecs:m],3)
print "the classifier came back with: %d,the real answer is : %d"\
% (classifierResult,datingLabels[i])
if(classifierResult!=datingLabels[i]):
errorCount+=1.0
print "the total error rate is: %f" %(errorCount/float(numTestVecs))
def classifyPerson():
resultList=['not at all','in small doses','in large doses']
percentTats=float(raw_input(\
"percentage of time spent playing video games?"))
ffMiles=float(raw_input("frequent flier miles earned per year?"))
iceCream=float(raw_input("liters of ice cream consumed per year?"))
datingDataMat,datingLabels=file2matrix('datingTestSet2.txt')
normMat,ranges,minVals=autoNorm(datingDataMat)
inArr=array([ffMiles,percentTats,iceCream])
classifierResult=classify0((inArr-\
minVals)/
ranges,normMat,datingLabels,3)
print "You will probably like this person: ",\
resultList[classifierResult -1]
def img2vector(filename):
returnVect=zeros((1,1024))
fr=open(filename)
for i in range(32):
lineStr=fr.readline()
for j in range(32):
returnVect[0,32*i+j]=int(lineStr[j])
return returnVect
def handwritingClassTest():
hwLabels=[]
trainingFileList=listdir('trainingDigits')
m=len(trainingFileList)
trainingMat=zeros((m,1024))
for i in range(m):
fileNameStr=trainingFileList[i]
fileStr=fileNameStr.split('.')[0]
classNumStr=int(fileStr.split('_')[0])
hwLabels.append(classNumStr)
trainingMat[i,:]=img2vector('trainingDigits/%s' % fileNameStr)
testFileList=listdir('testDigits')
errorCount=0.0
mTest=len(testFileList)
for i in range(mTest):
fileNameStr=testFileList[i]
fileStr=fileNamestr.split('.')[0]
classNumStr=int(fileStr.split('_')[0])
vectorUnderTest=img2vector('testDigits/%s' % fileNameStr)
classifierResult=classify0(vectorUnderTest,\
trainingMat,hwLabels,3)
print "the classifier came back with: %d,the real answer is : %d"\
% (classifierResult,classNumStr)
if(classifierResult!=classNumStr):errerCount+=1.0
print "\nthe total number of errors is: %d" % errorCount
print "\nthe total error rate is: %f" % (errorCount/float(mTest))