- x86-64汇编语言训练程序与实战
十除以十等于一
本文还有配套的精品资源,点击获取简介:汇编语言是一种低级语言,与机器代码紧密相关,特别适用于编写系统级代码及性能要求高的应用。nasm编译器是针对x86和x86-64架构的汇编语言编译器,支持多种语法风格和指令集。项目Euler提供数学和计算机科学问题,鼓励编程技巧应用,前100个问题的答案可共享。x86-64架构扩展了寄存器数量并引入新指令,提升了数据处理效率。学习汇编语言能够深入理解计算机底层
- (二)SAP Group Reporting (GR) 核心子模块功能及数据流向架构解析
数据如何从子公司流转到合并报表的全过程,即数据采集→合并引擎→报表输出,特别是HANA内存计算如何优化传统ETL瓶颈。SAPGroupReporting(GR)核心模块功能及数据流向的架构解析,涵盖核心组件、数据处理流程和关键集成点,适用于S/4HANA1809+版本:一、核心功能模块概览模块功能关键事务码/FioriApp数据采集(DataCollection)整合子公司财务数据(SAP/非SA
- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 神经形态计算如何突破冯·诺依曼架构限制?
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构架构ai
神经形态计算如何突破冯·诺依曼架构限制?关键词:神经形态计算、冯·诺依曼架构、内存墙、存算一体、脉冲神经网络、类脑芯片、低功耗计算摘要:本文将从“冯·诺依曼架构的前世今生”讲起,用“图书馆管理员搬书”的生活案例类比其核心矛盾,再通过“人脑神经元工作模式”的比喻引入神经形态计算的核心原理。我们将一步步拆解冯·诺依曼架构的三大限制(内存墙、高功耗、非结构化数据处理弱),并对应解析神经形态计算的三大突破
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- 数据可视化:艺术与科学的交汇点,如何让数据“开口说话”?
Echo_Wish
大数据信息可视化数据分析数据挖掘
数据可视化:艺术与科学的交汇点,如何让数据“开口说话”?数据可视化,是科技与艺术的结合,是让冰冷的数字变得生动有趣的桥梁。它既是科学——讲究准确性、逻辑性、数据处理的严谨性;又是艺术——强调美感、信息传递的直觉性,以及与观众的共鸣。可以说,好的数据可视化不仅能让人快速理解复杂信息,还能激发思考、引发行动。科学——数据可视化的理性基石首先,数据可视化必须遵循严谨的数据处理和清晰的信息传递原则。这就要
- 大学生入门:分支结构及其易踩坑的点
山中月侣
java大学生入门java开发语言经验分享
循环和分支在我们的日常代码中出现频率很高,无论是简单的数据处理还是复杂的业务逻辑,都会经常用到,它们看似简单,但是使用起来还是有很多隐藏的问题的,接下来我们一起学习或者复习一下:一、分支结构1、if语句主要包括三种:if语句、if-else语句、if-elseif-else语句if语句:if(条件表达式){//条件为真时执行的代码块}如果要执行的语句只有一句,可以省略“{}”,但是不建议if-el
- 深入理解卷积神经网络(CNN)与循环神经网络(RNN)
CodeJourney.
cnnrnn人工智能
在当今的人工智能领域,神经网络无疑是最为璀璨的明珠之一。而卷积神经网络(ConvolutionalNeuralNetworks,CNN)和循环神经网络(RecurrentNeuralNetworks,RNN)作为神经网络家族中的重要成员,各自有着独特的架构和强大的功能,广泛应用于众多领域。本文将深入探讨这两种神经网络的原理、特点以及应用场景,为对深度学习感兴趣的读者提供全面的知识讲解。一、卷积神经
- 时序预测 | MATLAB实现贝叶斯优化CNN-GRU时间序列预测(股票价格预测)
Matlab机器学习之心
matlabcnngru
✅作者简介:热爱数据处理、数学建模、仿真设计、论文复现、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击主页:Matlab科研工作室个人信条:格物致知,期刊达人。内容介绍股票价格预测一直是金融领域一个极具挑战性的课题。其内在的非线性、随机性和复杂性使得传统的预测方法难以取得令人满意的效果。近年来,深度学习技术,特别是卷积神经网络(CNN)和门控循环单元(GRU)的结合,为时
- 时序预测 | MATLAB实现BO-CNN-GRU贝叶斯优化卷积门控循环单元时间序列预测
Matlab算法改进和仿真定制工程师
matlabcnngru
✅作者简介:热爱数据处理、数学建模、算法创新的Matlab仿真开发者。更多Matlab代码及仿真咨询内容点击:Matlab科研工作室个人信条:格物致知。内容介绍时间序列预测在各个领域都具有重要的应用价值,例如金融市场预测、气象预报、交通流量预测等。准确地预测未来趋势对于决策制定至关重要。近年来,深度学习技术在时间序列预测领域取得了显著进展,其中卷积神经网络(CNN)和门控循环单元(GRU)由于其强
- 使用Python和Gradio构建实时数据可视化工具
PythonAI编程架构实战家
信息可视化python开发语言ai
使用Python和Gradio构建实时数据可视化工具关键词:Python、Gradio、数据可视化、实时数据、Web应用、交互式界面、数据科学摘要:本文将详细介绍如何使用Python和Gradio框架构建一个实时数据可视化工具。我们将从基础概念开始,逐步深入到核心算法实现,包括数据处理、可视化技术以及Gradio的交互式界面设计。通过实际项目案例,读者将学习如何创建一个功能完整、响应迅速的实时数据
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 非欧空间计算加速:图神经网络与微分几何计算的GPU优化(流形数据的内存布局优化策略)
九章云极AladdinEdu
空间计算神经网络人工智能gpu算力算法java开发语言
一、非欧空间计算的革命性意义与核心挑战在三维形状分析、社交网络建模、分子动力学模拟等领域,非欧几里得空间数据(流形数据)的处理正推动人工智能技术向更复杂的几何结构迈进。传统欧式空间优化方法在处理流形数据时面临根本性局限:黎曼度量导致距离计算失效、局部坐标系动态变化引发内存访问模式混乱、曲率变化影响并行计算效率。本文提出基于分块流形存储(BlockedManifoldStorage,BMS)与层次化
- Spring AI与机器学习:智能应用开发新范式
tmjpz04412
人工智能spring机器学习
SpringAI与机器学习的整合SpringAI是一个基于Spring生态的AI开发框架,旨在简化智能应用的开发流程。通过SpringAI,开发者可以快速集成机器学习模型,构建高效的智能应用。SpringAI支持多种机器学习库和框架,如TensorFlow、PyTorch和Scikit-learn,提供统一的API接口。SpringAI的核心优势在于其模块化设计和自动化配置。开发者无需关心复杂的依
- # 【GEE基础及工具)(一)】工欲善其事,必先利其器:借助Open Earth Engine实现影像高效处理及批量任务执行
遥感AI实战
GEE基础教程遥感GEE地理信息信息可视化sentinel
在遥感数据分析与处理工作中,海量影像数据的预处理(如去云、裁剪)和分析(如均值计算)是支撑后续研究的核心环节。而Sentinel-2影像作为常用的遥感数据源,常因云层遮挡、数据量大等问题增加处理难度。同时,在使用GoogleEarthEngine(GEE)处理数据时,“批量导出任务需手动逐个启动”的问题也会显著降低效率。本文将从“工具优化”和“数据处理”两个维度展开,详细介绍如何通过GEE完成Se
- 基于深度学习的目标检测算法综述:从RCNN到YOLOv13,一文看懂十年演进!
人工智能教程
深度学习目标检测算法人工智能自动驾驶YOLO机器学习
一、引言:目标检测的十年巨变2012年AlexNet拉开深度学习序幕,2014年RCNN横空出世,目标检测从此进入“深度时代”。十年间,算法从两阶段到单阶段,从Anchor-base到Anchor-free,从CNN到Transformer,从2D到3D,从监督学习到自监督学习,迭代速度之快令人目不暇接。本文将系统梳理基于深度学习的目标检测算法,带你全面了解技术演进、核心思想、代表算法、工业落地与
- Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版)
Baumer工业相机堡盟工业相机如何通过YoloV8深度学习模型实现不同水果的检测识别(C#代码,UI界面版))工业相机使用YoloV8模型实现不同水果的检测识别工业相机通过YoloV8模型实现不同水果的检测识别的技术背景在相机SDK中获取图像转换图像的代码分析工业相机图像转换Bitmap图像格式和Mat图像重要核心代码本地文件图像转换Bitmap图像格式和Mat图像重要核心代码Mat图像导入Yo
- Mybatisplus的雪花算法及代码生成器的使用
你我约定有三
算法dreamweaver
1.雪花算法1.1背景:雪花算法(Snowflake)的使用背景主要源于高并发分布式系统环境下对唯一ID生成的需求。这种需求在像Twitter这样的社交媒体平台上尤为突出,因为Twitter需要处理每秒上万条消息的请求,并且每条消息都必须分配一个唯一的ID。这些ID不仅需要全局唯一,以跨机器、跨时间区分,还需要保持一定的顺序性(尽管不要求连续),以方便客户端排序和后续的数据处理。1.2与自动递增的
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- 医疗AI新基建:MCP与A2A协议的破局与前瞻
Allen_Lyb
医疗高效编程研发人工智能健康医疗自动化自然语言处理数据库
一、引言1.1研究背景与动因在数字化与智能化飞速发展的时代浪潮下,医疗AI已成为全球医疗领域变革与创新的关键驱动力。从疾病的早期精准诊断,到个性化治疗方案的制定,再到远程医疗与健康管理,医疗AI正以其强大的数据处理能力、精准的模式识别能力和高效的决策辅助能力,重塑着传统医疗服务的格局。据相关数据显示,2023年中国AI医疗行业规模达973亿元,预计2028年将增至1598亿元,年复合增长率达10.
- 人工智能概念之九:深度学习概述
文章目录相关文章一、深度学习的定位:AI时代的基石技术1.1技术生态全景图1.2技术革命的催化剂二、深度学习的双面性:性能优势与技术挑战2.1技术优势全景扫描2.2技术挑战深度剖析三、技术演进时间轴:70年的厚积薄发四、主流框架生态对比五、未来演进方向相关文章人工智能概念之二:人工智能核心概念:网页链接一、深度学习的定位:AI时代的基石技术1.1技术生态全景图深度学习处于人工智能(AI)技术金字塔
- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- TiDB - 分布式数据库的架构与特性
爽新全效瓷兔膏
本文还有配套的精品资源,点击获取简介:TiDB是一个开源的分布式NewSQL数据库,受到了Google的Spanner/F1系统的启发。它提供水平扩展和强一致性事务,适用于需要高可用性和大规模数据处理的场景。TiDB的核心特点包括其分布式架构,由TiDBServer(SQL层)、PDServer(调度器)和TiKVServer(存储引擎)组成;支持无缝的水平扩展和ACID事务;与MySQL高度兼容
- 学苑教育杂志《学苑教育》杂志社学苑教育编辑部2025年第21期目录
QQ296078736
人工智能
专题研究推进“教-学-评”一体化,打造小学语文高效课堂刘月兰;4-6教育管理新高考制度下普通高中生涯教育课程设计的研究霍亚贞;马玲;7-9课堂教学核心素养下小学数学深度学习课堂的构建策略康贵景;10-12“双减”背景下初中英语教学的课堂模式高燕;13-15小学低年级数学说理课堂构建策略玉洁;16-18基于法治观念培育的道法课项目式教学策略许静;19-21“双师课堂”在初中语文写作教学中的实践孙巧玲
- Hive与Hudi集成:增量大数据处理方案
AI大数据智能洞察
大数据与AI人工智能大数据AI应用hivehadoop数据仓库ai
Hive与Hudi集成:增量大数据处理方案关键词:Hive、Hudi、增量大数据处理、数据集成、数据湖摘要:本文主要探讨了Hive与Hudi集成的增量大数据处理方案。我们将深入了解Hive和Hudi的核心概念,剖析它们之间的关系,详细阐述集成的算法原理与操作步骤,通过实际项目案例展示如何进行开发环境搭建、代码实现与解读。同时,会介绍该集成方案的实际应用场景、相关工具和资源,探讨未来发展趋势与挑战。
- 视觉Transformer还有哪些点可以研究?怎么应用?
计算机视觉工坊
3D视觉从入门到精通学习算法开源
0.这篇文章干了啥?今天笔者为大家推荐一篇最新的综述,详细总结了Transformer的网络架构、优化策略、发展方向,还会定期更新Github,研究注意力机制的小伙伴一定不要错过。注意机制有助于人类视觉系统有效地分析和理解复杂场景,它能够聚焦于图像的关键区域,同时忽略无关紧要的部分。受此概念启发,注意机制已经被引入到计算机视觉(CV)中,以动态地为图像中的不同区域分配权重。这使得神经网络能够专注于
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 怎么判断一个DAPP是否真正去中心化
判断一个DAPP(去中心化应用)是否真正去中心化,需要从多个维度进行考察。以下是关键评估标准:1.区块链依赖程度✅真正去中心化:核心逻辑和数据处理完全依赖智能合约,运行在区块链上(如以太坊、Solana等)。❌伪去中心化:依赖中心化服务器处理关键数据或业务逻辑,仅前端去中心化。2.智能合约控制权✅去中心化:合约代码开源,无管理员密钥(adminkey)或可升级后门,治理由DAO(去中心化自治组织)
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f