- 使用OpenCV对视频进行处理:视频读取、视频显示和视频保存,视频追踪等
无规则ai
OpenCVopencv人工智能计算机视觉python
一.视频的读写1.从文件中读取视频并播放(1)创建读取视频的对象cap=cv2.VideoCapture(filepath)filepath:视频文件的路径(2)视频的属性信息a.获取视频的某些属性retval=cap.get(propId)propId:从0到18的数字,每个数字表示视频的属性常用的属性有属性名对应数值功能描述CAP_PROP_POS_MSEC0视频当前的播放位置,单位为毫秒。C
- OpenCV读取视频帧卡死的BUG修复
henysugar
opencv音视频bug
OpenCV读取指定视频文件如果异常的时候,会卡死一直不退出,问题是卡在CvCapture_MSMF::grabVideoFrame函数内,跟了一下,发现有个判断有点问题,其下面的源码:while(!stopFlag) { for(;;) { CV_TRACE_REGION("ReadSample"); if(!SUCCEEDED(hr=videoFileSour
- AI 绘画 + 编程:10 分钟生成个性化艺术作品
大力出奇迹985
人工智能
本文围绕Python+OpenCV实现自动人脸识别门禁系统展开,先概述系统的基本构成与作用,再从系统核心技术、开发实现步骤、功能扩展方向、实际应用场景及优化改进策略五个方面详细阐述,最后总结系统的价值与发展前景,为相关开发和应用提供全面参考。一、系统核心技术解析人脸识别技术是门禁系统的核心,其关键在于对人脸特征的精准提取与匹配。OpenCV作为开源计算机视觉库,提供了丰富的人脸检测算法,如Haar
- RK3568平台(camera篇)opencv处理图像
嵌入式_笔记
瑞芯微opencv人工智能计算机视觉
一.颜色转换cv2.cvtColor()函数功能:将一幅图像从一个色彩空间转换到另一个色彩空间。函数原型:cv2.cvtColor(src,code,dst=None,dstCn=None)参数定义:src:要转换的源文件code,转换的色彩空间,在opencv中有超过150种颜色空间转换方法,但是经常用的只有BGR-灰度图和BGR-HSVBGR和灰度图的转换使用cv2.COLOR_BGR2GRA
- RK3568笔记九十二:QT使用Opencv显示摄像头
殷忆枫
RK3568学习笔记笔记
若该文为原创文章,转载请注明原文出处。测试使用QT调用Opencv的API显示摄像头,板子为正点原子的RK3568,最终想实现的是在RK3568平台上使用Qt框架进行部署,利用NPU推理加速视频目标识别。此篇为测试功能代码为正点原子提供的代码,直接用来测试,在未看代码时一直不明白怎么添加opencv的库,后面明白了,只增加了下面的两行:CONFIG+=link_pkgconfigPKGCONFIG
- 《零基础入门AI:从图像梯度到凸包特征检测(OpenCV图像特征提取)》
竹子_23
OpenCV入门opencv人工智能计算机视觉
一、图像梯度处理:理解像素变化的本质1.1图像梯度基础图像梯度是计算机视觉中的核心概念,它描述了图像中像素强度的变化情况:梯度方向:像素值变化最剧烈的方向(垂直于边缘)梯度幅度:像素值变化的强度(值越大表示边缘越明显)物理意义:就像地形图中的等高线,梯度大的地方相当于陡坡,梯度小的地方相当于平地1.2垂直边缘提取垂直边缘是图像中物体左右边界形成的线条:特征:水平方向上像素值发生突变应用场景:文档扫
- 《零基础入门AI:OpenCV图像预处理进一步学习》
竹子_23
OpenCV入门opencv人工智能学习
本文全面讲解OpenCV图像预处理的七大核心技术(插值方法、边缘填充、图像矫正(透视变换)、图像掩膜、ROI切割、图像添加水印、图像噪点消除),每个知识点都配有详细解释和实用代码示例,帮助初学者建立系统的图像处理知识体系。一、插值方法:图像缩放的核心技术插值是在图像缩放或旋转时估算新像素值的方法,不同方法在速度和质量上有显著差异。1.最近邻插值原理:直接取最邻近像素的值特点:速度最快,但会产生锯齿
- OpenCV基础02_图像预处理
白槿_cha
计算机视觉基础opencv人工智能计算机视觉笔记
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学一、图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂
- 小白学视觉 | 在OpenCV中进行图像预处理
双木的木
深度学习拓展阅读人工智能机器学习深度学习opencv计算机视觉图像处理ai
本文来源公众号“小白学视觉”,仅用于学术分享,侵权删,干货满满。原文链接:在OpenCV中进行图像预处理今天,我们进一步深入,并处理在图像处理中常用的形态学操作。形态学操作用于提取区域、边缘、形状等。什么是形态学操作?形态学操作是在二值图像上进行的。二值图像可能包含许多不完美之处。特别是由一些简单的阈值操作产生的二值图像(如果你对阈值不熟悉,现在不用担心)可能包含许多噪声和畸变。OpenCV库中提
- 【OpenCV基础】凸包检测、Harris角点检测、Canny边缘检测
:如果你也对机器人、人工智能感兴趣,看来我们志同道合✨:不妨浏览一下我的博客主页【https://blog.csdn.net/weixin_51244852】:文章若有幸对你有帮助,可点赞收藏⭐不迷路:内容若有错误,敬请留言指正!原创文,转载请注明出处文章目录一、凸包检测API1.drawContours2.convexHull全部代码-有滑动条效果展示部分代码-无滑动条二、Harris角点检测角
- 使用Python,OpenCV计算跑图的图像彩色度
程序媛一枚~
PythonOpenCVPython进阶pythonopencv开发语言
使用Python,OpenCV计算跑图的图像彩色度这篇博客将介绍如何计算跑图里最鲜艳的top25图片和最灰暗的top25图片并显示色彩彩色度值展示。效果图以下分别是最鲜艳top25和最灰暗top25对比效果图:最鲜艳top25效果图:最灰暗top25效果图如下:源码见如下链接https://blog.csdn.net/qq_40985985/article/details/115014533#US
- OpenCV(11)边缘检测、轮廓绘制、简单平移距离测量 C++
sam-zy
1.边缘检测原文链接:http://blog.sina.com.cn/s/blog_154bd48ae0102weuk.html边缘检测的一般步骤:1.滤波边缘检测的算法主要是基于图像的一阶和二阶导数。但是导数通常对噪声很敏感,所以首先要用滤波器降低噪声。常见的滤波方法主要是高斯滤波。2.增强增强边缘的基础是确定图像各点领域强度的变化值。增强算法可以将图像灰度点邻域强度值有显著变化的点凸现出来,在
- OpenCV图像梯度边缘轮廓处理
Jiamusi_night
opencv计算机视觉人工智能
一、梯度处理的sobel算子函数函数名:cv2.Sobel(src,ddepth,dx,dy,ksize=3,scale=1,delta=0,borderType=None)功能:用于计算图像梯度(gradient)的函数参数:src:输入图像,它应该是灰度图像。ddepth:输出图像的所需深度(数据类型)。通常,你可以使用-1来表示与输入图像相同的深度,或者使用如cv2.CV_64F等来指定特定
- 【人工智能-14】OpenCV梯度处理、边缘检测、绘制轮廓、凸包检测、轮廓特征查找
m0_64233047
人工智能opencv计算机视觉
上一期【人工智能-13】OpenCV插值方法,边缘填充,图像矫正,图像掩膜,图像融合与噪点消除文章目录一、梯度处理1.图像梯度2.垂直边缘提取3.Sobel算子4.Laplacian算子二、边缘检测1.高斯模糊(降噪)2.计算梯度强度和方向3.非极大值抑制(NMS)4.双阈值检测5.边缘连接(滞后阈值)三、绘制轮廓1.什么是轮廓2.寻找轮廓3.轮廓绘制四、凸包检测1.穷举法2.QuickHull五
- OpenCV+Python
安装OpenCV:Python:直接pipinstallopencv-python(核心库)和opencv-contrib-python(扩展功能)。pipinstallopencv-pythonpipinstallopencv-contrib-python验证安装:importcv2print(cv2.__version__)#输出版本号以下代码来源于:链接if__name__=='__main
- Python代码库OpenCV之11 切割碑文
iCloudEnd
本文代码来自https://blog.csdn.net/u010095372/article/details/79420641源代码适用于python2,我做个简单修改测试图片测试图片代码#-*-coding:utf-8-*-importosimportnumpyasnpimportcv2.cv2ascvfrommatplotlibimportpyplotaspltimportheapqimpor
- opencv-day2-图像预处理1
谢眠
OpenCVopencv计算机视觉
图像预处理在计算机视觉和图像处理领域,图像预处理能够提高后续处理(如特征提取、目标检测等)的准确性和效率。常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、垂直翻转或同时水平和垂直翻转。这个函数接受两个参数:要翻转的图像和一个指定翻
- opencv-day3-图像预处理
图像滤波所为图像滤波通过滤波器得到另一个图像什么是滤波器在深度学习中,滤波器又称为卷积核,滤波的过程成为卷积卷积核概念卷积核大小,一般为奇数,是为了保证锚点在中间,防止位置发生偏移的原因什么是锚点?卷积核大小的影响在深度学习中,卷积核越大,看到的信息越多,提取的特征越好,同时计算量越大图像平滑处理图像噪声的定义和性质图像噪声是指存在于图像数据中的不必要的或多余的干扰信息。它妨碍了人们通过视
- 基于Opencv的手势识别
双马尾为什么是神
opencv人工智能计算机视觉
thumb目录项目背景项目概览功能实现分类器选择数据收集与处理数据增强与傅里叶描述子计算SVM训练GUI设计未来展望项目背景回首过去一年半的大学时光,我深感自己过于安逸。没有明确的目标,对于学习也不太上心。倘若继续这样浑浑噩噩过下去,即便以后只想得过且过地过普通生活,最终结果恐怕难遂人愿。“取乎其上,得乎其中;取乎其中,得乎其下;取乎其下,则无所得矣。”于是乎我制定了与未来展望相匹配的学习路径,哪
- 创建全景图像的完整指南:Make-Panorama-Image实战教程
色空空色
本文还有配套的精品资源,点击获取简介:在IT领域,全景图像创建技术用于合并多张连续拍摄的照片以获得宽广视角。本教程将介绍使用Python和JupyterNotebook实现全景图像生成的步骤,包括图像对齐、融合、扭曲校正和裁剪调整。通过学习OpenCV、PIL/Pillow和scikit-image等库的使用,你将掌握创建和处理全景图像的技术。1.全景图像生成的步骤与原理全景图像(Panorama
- opencv学习(图像金字塔)
蓝桉802
opencv学习人工智能
1.什么是图像金字塔图像金字塔是一种多尺度图像表示方法,通过对原始图像进行下采样(缩小)和上采样(放大),生成一系列不同分辨率的图像集合,形似“金字塔”(底部是高分辨率原始图像,向上逐渐变为低分辨率图像)。2.核心作用多尺度分析:不同分辨率的图像适用于检测不同大小的目标(如大目标在低分辨率图像中更易识别,小目标需要高分辨率)。图像融合:结合不同尺度的图像信息(如拉普拉斯金字塔可无缝融合两张图像的细
- OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
牵牛老人
opencv专栏opencv学习矩阵
一、图像处理基础概念1.1数字图像的矩阵如下图,这是我们看到的Lena的头像,但是计算机看来,这副图像只是一堆亮度各异的点。一副尺寸为M×N的图像可以用一个M×N的矩阵来表示,矩阵元素的值表示这个位置上的像素的亮度,一般来说像素值越大表示该点越亮。一般来说,灰度图用2维矩阵表示;彩色(多通道)图像用3维矩阵(M×N×3)表示。对于图像显示来说,目前大部分设备都是用无符号8位整数(类型为CV_8U)
- 关于pip安装opencv库等常用库超时的解决办法
小菜鸡1145
pipopencv人工智能
平时在使用pip安装库时常常过慢导致安装失败或者等待时间过长,每次都得去网上找清华源地址,在这里记录一下方便以后直接使用。-ihttps://pypi.tuna.tsinghua.edu.cn/simple直接在所装库的后面加上这段,比如:pipinstallopencv-contrib-python-ihttps://pypi.tuna.tsinghua.edu.cn/simple部分地区清华源
- Cesium 中结合 OpenCV.js 对影像图层进行分割,并将结果转为 GeoJSON 加载到地图
小赖同学啊
testTechnologyPreciousopencvjavascript人工智能
在Cesium中结合OpenCV.js对影像图层进行分割,并将结果转为GeoJSON加载到地图,需要以下步骤:1.获取Cesium影像数据首先,需要从Cesium的ImageryLayer中提取当前视图的影像像素数据(RGB或RGBA)。constviewer=newCesium.Viewer('cesiumContainer');//获取当前激活的影像图层(如Bing地图或自定义WMS)cons
- 【电赛学习笔记】MaxiCAM 图像基础操作
悠哉悠哉愿意
算法学习笔记学习笔记python视觉检测
前言本文仅是对MaxiPy官方文档的整理与总结,自学请看官方文档,侵权即删MaixCAMMaixPy快速开始-MaixPy下面给出「整段速查脚本」的逐行、逐参数超详细中文解释,方便你随时Ctrl+F定位查阅。#-*-coding:utf-8-*-"""MaixCAMMaixPy图像基础速查1.创建/加载/保存2.颜色空间与格式转换3.几何变换4.绘图与文字5.与外部数据(bytes、OpenCV、
- OpenCV快速入门【OpenCV环境安装与基本操作】
欧阳小猜
人工智能opencv人工智能计算机视觉
文章目录前言一、OpenCV简介与环境搭建1.OpenCV介绍2.OpenCV环境安装与验证二、图像的基本表示:NumPy数组1.图像在计算机的储存方式2.图像的访问(显示)和修改像素值3.图像的基本属性(高度、宽度、通道数)三、图像的读取与存储1.读取图像(cv2.imread)2.保存图像(cv2.imwrite)四、图像的基本操作1.图像切片2.图片的缩放3.图像的绘制3.1绘制直线3.2绘
- OpenCV图像预处理
图像预处理在计算机视觉和图像处理领域,图像预处理是一个重要的步骤,它能够提高后续处理(如特征提取、目标检测等)的准确性和效率。OpenCV提供了许多图像预处理的函数和方法,以下是一些常见的图像预处理操作:图像色彩空间转换图像大小调整图像仿射变换图像翻转图像裁剪图像二值化处理图像去噪边缘检测图像平滑处理图像形态学图像翻转cv2.flip是OpenCV库中的一个函数,用于翻转图像。翻转可以是水平翻转、
- 2025暑期—07YOLO-YOLOV11
宇称不守恒4.0
人工智能图像处理YOLO深度学习人工智能
安装的环境包括YoloV11,torch2.32.4Clip1.0D2LOpenCV4.12等安装1Conda环境安装YOLOcondacreate--prefix=D:/YOLO11/yolo11_envpython=3.10condaactivateD:\YOLO11\yolo11_envPytorch网站确定condainstallpytorch==2.3.0torchvision==0.1
- OpenCV常见的优化方法和技巧总结
liuyong178
这里写自定义目录标题新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML图表FLowchart流程图导出与导入导出导入【尊重原创,转载请注明出处】http://bl
- 【OpenCV-Python】——图像处理基础&读写及显示图像&读写及播放视频&灰度图/彩色图/图像通道操作、运算
柯宝最帅
OpenCV学习pythonopencv图像处理
目录前言:1、读并显示图像、写图像2、读并播放视频、写视频3、操作灰度图和彩色图、图像通道操作、运算总结:前言:在Python中,OpenCV使用NumPy数组存储图像,Numpy是使用Python进行数组计算的软件包,提供强大的N维数组对象,支持复杂的广播功能(数组运算),集成了C/C++和Fortran代码工具,支持线性代数、傅里叶变换和随机数等特性,还可作为通用数据的高效多维容器,如在Ope
- 基本数据类型和引用类型的初始值
3213213333332132
java基础
package com.array;
/**
* @Description 测试初始值
* @author FuJianyong
* 2015-1-22上午10:31:53
*/
public class ArrayTest {
ArrayTest at;
String str;
byte bt;
short s;
int i;
long
- 摘抄笔记--《编写高质量代码:改善Java程序的151个建议》
白糖_
高质量代码
记得3年前刚到公司,同桌同事见我无事可做就借我看《编写高质量代码:改善Java程序的151个建议》这本书,当时看了几页没上心就没研究了。到上个月在公司偶然看到,于是乎又找来看看,我的天,真是非常多的干货,对于我这种静不下心的人真是帮助莫大呀。
看完整本书,也记了不少笔记
- 【备忘】Django 常用命令及最佳实践
dongwei_6688
django
注意:本文基于 Django 1.8.2 版本
生成数据库迁移脚本(python 脚本)
python manage.py makemigrations polls
说明:polls 是你的应用名字,运行该命令时需要根据你的应用名字进行调整
查看该次迁移需要执行的 SQL 语句(只查看语句,并不应用到数据库上):
python manage.p
- 阶乘算法之一N! 末尾有多少个零
周凡杨
java算法阶乘面试效率
&n
- spring注入servlet
g21121
Spring注入
传统的配置方法是无法将bean或属性直接注入到servlet中的,配置代理servlet亦比较麻烦,这里其实有比较简单的方法,其实就是在servlet的init()方法中加入要注入的内容:
ServletContext application = getServletContext();
WebApplicationContext wac = WebApplicationContextUtil
- Jenkins 命令行操作说明文档
510888780
centos
假设Jenkins的URL为http://22.11.140.38:9080/jenkins/
基本的格式为
java
基本的格式为
java -jar jenkins-cli.jar [-s JENKINS_URL] command [options][args]
下面具体介绍各个命令的作用及基本使用方法
1. &nb
- UnicodeBlock检测中文用法
布衣凌宇
UnicodeBlock
/** * 判断输入的是汉字 */ public static boolean isChinese(char c) { Character.UnicodeBlock ub = Character.UnicodeBlock.of(c);
- java下实现调用oracle的存储过程和函数
aijuans
javaorale
1.创建表:STOCK_PRICES
2.插入测试数据:
3.建立一个返回游标:
PKG_PUB_UTILS
4.创建和存储过程:P_GET_PRICE
5.创建函数:
6.JAVA调用存储过程返回结果集
JDBCoracle10G_INVO
- Velocity Toolbox
antlove
模板toolboxvelocity
velocity.VelocityUtil
package velocity;
import org.apache.velocity.Template;
import org.apache.velocity.app.Velocity;
import org.apache.velocity.app.VelocityEngine;
import org.apache.velocity.c
- JAVA正则表达式匹配基础
百合不是茶
java正则表达式的匹配
正则表达式;提高程序的性能,简化代码,提高代码的可读性,简化对字符串的操作
正则表达式的用途;
字符串的匹配
字符串的分割
字符串的查找
字符串的替换
正则表达式的验证语法
[a] //[]表示这个字符只出现一次 ,[a] 表示a只出现一
- 是否使用EL表达式的配置
bijian1013
jspweb.xmlELEasyTemplate
今天在开发过程中发现一个细节问题,由于前端采用EasyTemplate模板方法实现数据展示,但老是不能正常显示出来。后来发现竟是EL将我的EasyTemplate的${...}解释执行了,导致我的模板不能正常展示后台数据。
网
- 精通Oracle10编程SQL(1-3)PLSQL基础
bijian1013
oracle数据库plsql
--只包含执行部分的PL/SQL块
--set serveroutput off
begin
dbms_output.put_line('Hello,everyone!');
end;
select * from emp;
--包含定义部分和执行部分的PL/SQL块
declare
v_ename varchar2(5);
begin
select
- 【Nginx三】Nginx作为反向代理服务器
bit1129
nginx
Nginx一个常用的功能是作为代理服务器。代理服务器通常完成如下的功能:
接受客户端请求
将请求转发给被代理的服务器
从被代理的服务器获得响应结果
把响应结果返回给客户端
实例
本文把Nginx配置成一个简单的代理服务器
对于静态的html和图片,直接从Nginx获取
对于动态的页面,例如JSP或者Servlet,Nginx则将请求转发给Res
- Plugin execution not covered by lifecycle configuration: org.apache.maven.plugin
blackproof
maven报错
转:http://stackoverflow.com/questions/6352208/how-to-solve-plugin-execution-not-covered-by-lifecycle-configuration-for-sprin
maven报错:
Plugin execution not covered by lifecycle configuration:
- 发布docker程序到marathon
ronin47
docker 发布应用
1 发布docker程序到marathon 1.1 搭建私有docker registry 1.1.1 安装docker regisry
docker pull docker-registry
docker run -t -p 5000:5000 docker-registry
下载docker镜像并发布到私有registry
docker pull consol/tomcat-8.0
- java-57-用两个栈实现队列&&用两个队列实现一个栈
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
/*
* Q 57 用两个栈实现队列
*/
public class QueueImplementByTwoStacks {
private Stack<Integer> stack1;
pr
- Nginx配置性能优化
cfyme
nginx
转载地址:http://blog.csdn.net/xifeijian/article/details/20956605
大多数的Nginx安装指南告诉你如下基础知识——通过apt-get安装,修改这里或那里的几行配置,好了,你已经有了一个Web服务器了。而且,在大多数情况下,一个常规安装的nginx对你的网站来说已经能很好地工作了。然而,如果你真的想挤压出Nginx的性能,你必
- [JAVA图形图像]JAVA体系需要稳扎稳打,逐步推进图像图形处理技术
comsci
java
对图形图像进行精确处理,需要大量的数学工具,即使是从底层硬件模拟层开始设计,也离不开大量的数学工具包,因为我认为,JAVA语言体系在图形图像处理模块上面的研发工作,需要从开发一些基础的,类似实时数学函数构造器和解析器的软件包入手,而不是急于利用第三方代码工具来实现一个不严格的图形图像处理软件......
&nb
- MonkeyRunner的使用
dai_lm
androidMonkeyRunner
要使用MonkeyRunner,就要学习使用Python,哎
先抄一段官方doc里的代码
作用是启动一个程序(应该是启动程序默认的Activity),然后按MENU键,并截屏
# Imports the monkeyrunner modules used by this program
from com.android.monkeyrunner import MonkeyRun
- Hadoop-- 海量文件的分布式计算处理方案
datamachine
mapreducehadoop分布式计算
csdn的一个关于hadoop的分布式处理方案,存档。
原帖:http://blog.csdn.net/calvinxiu/article/details/1506112。
Hadoop 是Google MapReduce的一个Java实现。MapReduce是一种简化的分布式编程模式,让程序自动分布到一个由普通机器组成的超大集群上并发执行。就如同ja
- 以資料庫驗證登入
dcj3sjt126com
yii
以資料庫驗證登入
由於 Yii 內定的原始框架程式, 採用綁定在UserIdentity.php 的 demo 與 admin 帳號密碼: public function authenticate() { $users=array( &nbs
- github做webhooks:[2]php版本自动触发更新
dcj3sjt126com
githubgitwebhooks
上次已经说过了如何在github控制面板做查看url的返回信息了。这次就到了直接贴钩子代码的时候了。
工具/原料
git
github
方法/步骤
在github的setting里面的webhooks里把我们的url地址填进去。
钩子更新的代码如下: error_reportin
- Eos开发常用表达式
蕃薯耀
Eos开发Eos入门Eos开发常用表达式
Eos开发常用表达式
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2014年8月18日 15:03:35 星期一
&
- SpringSecurity3.X--SpEL 表达式
hanqunfeng
SpringSecurity
使用 Spring 表达式语言配置访问控制,要实现这一功能的直接方式是在<http>配置元素上添加 use-expressions 属性:
<http auto-config="true" use-expressions="true">
这样就会在投票器中自动增加一个投票器:org.springframework
- Redis vs Memcache
IXHONG
redis
1. Redis中,并不是所有的数据都一直存储在内存中的,这是和Memcached相比一个最大的区别。
2. Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,hash等数据结构的存储。
3. Redis支持数据的备份,即master-slave模式的数据备份。
4. Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
Red
- Python - 装饰器使用过程中的误区解读
kvhur
JavaScriptjqueryhtml5css
大家都知道装饰器是一个很著名的设计模式,经常被用于AOP(面向切面编程)的场景,较为经典的有插入日志,性能测试,事务处理,Web权限校验, Cache等。
原文链接:http://www.gbtags.com/gb/share/5563.htm
Python语言本身提供了装饰器语法(@),典型的装饰器实现如下:
@function_wrapper
de
- 架构师之mybatis-----update 带case when 针对多种情况更新
nannan408
case when
1.前言.
如题.
2. 代码.
<update id="batchUpdate" parameterType="java.util.List">
<foreach collection="list" item="list" index=&
- Algorithm算法视频教程
栏目记者
Algorithm算法
课程:Algorithm算法视频教程
百度网盘下载地址: http://pan.baidu.com/s/1qWFjjQW 密码: 2mji
程序写的好不好,还得看算法屌不屌!Algorithm算法博大精深。
一、课程内容:
课时1、算法的基本概念 + Sequential search
课时2、Binary search
课时3、Hash table
课时4、Algor
- C语言算法之冒泡排序
qiufeihu
c算法
任意输入10个数字由小到大进行排序。
代码:
#include <stdio.h>
int main()
{
int i,j,t,a[11]; /*定义变量及数组为基本类型*/
for(i = 1;i < 11;i++){
scanf("%d",&a[i]); /*从键盘中输入10个数*/
}
for
- JSP异常处理
wyzuomumu
Webjsp
1.在可能发生异常的网页中通过指令将HTTP请求转发给另一个专门处理异常的网页中:
<%@ page errorPage="errors.jsp"%>
2.在处理异常的网页中做如下声明:
errors.jsp:
<%@ page isErrorPage="true"%>,这样设置完后就可以在网页中直接访问exc