- 【项目实战】 容错机制与故障恢复:保障系统连续性的核心体系
本本本添哥
004-研效与DevOps运维工具链002-进阶开发能力分布式
在分布式系统中,硬件故障、网络波动、软件异常等问题难以避免。容错机制与故障恢复的核心目标是:通过主动检测故障、自动隔离风险、快速转移负载、重建数据一致性,最大限度减少故障对业务的影响,保障系统“持续可用”与“数据不丢失”。以下从核心机制、实现方式、典型案例等维度展开说明。一、故障检测:及时发现异常节点故障检测是容错的第一步,需通过多维度手段实时感知系统组件状态,确保故障被快速识别。1.健康检查与心
- Redis 分布式锁深度解析:过期时间与自动续期机制
爱恨交织围巾
分布式事务redis分布式数据库微服务学习go
Redis分布式锁深度解析:过期时间与自动续期机制在分布式系统中,Redis分布式锁的可靠性很大程度上依赖于对锁生命周期的管理。上一篇文章我们探讨了分布式锁的基本原理,今天我们将聚焦于一个关键话题:如何通过合理设置过期时间和实现自动续期机制,来解决分布式锁中的死锁与锁提前释放问题。一、为什么过期时间是分布式锁的生命线?你的笔记中提到"服务挂掉时未删除锁可能导致死锁",这正是过期时间要解决的核心问题
- 分布式全局唯一ID生成:雪花算法 vs Redis Increment,怎么选?
雪花算法vsRedisIncrement:分布式全局唯一ID生成方案深度对比在分布式系统开发中,“全局唯一ID”是绕不开的核心问题。无论是分库分表的数据库设计、订单编号的唯一性保证,还是日志追踪的链路标识,都需要一套可靠的ID生成方案。今天我们就来聊聊两种主流方案——雪花算法(Snowflake)和RedisIncrement,并从原理、特性到适用场景,帮你理清如何选择。同时,我们还将对比其他常见
- Spring Security OAuth2.0在分布式系统中的安全实践
引言分布式系统架构下,安全认证与授权面临跨服务、高并发、多租户等挑战。SpringSecurity与OAuth2.0的结合为微服务安全提供了标准化解决方案。分布式系统中的安全挑战跨服务身份认证的复杂性令牌管理的可扩展性问题多租户场景下的权限隔离需求防止CSRF、XSS等常见攻击SpringSecurityOAuth2.0核心架构授权服务器设计@EnableAuthorizationServer配置
- 【Spring WebFlux】为什么 Spring 要拥抱响应式
会飞的架狗师
SpringWebFluxspringjava后端
在现代分布式系统中,响应式系统已成为应对高并发、低延迟需求的核心方案。但构建响应式系统并非易事——它需要框架级别的支持来解决异步处理、资源调度、背压控制等底层问题。作为Java生态中最具影响力的框架,Spring对响应式的支持并非偶然,而是技术演进的必然选择。本文将从响应式系统的构建挑战出发,剖析Spring拥抱响应式的底层逻辑。一、响应式系统的构建困境:现有方案的局限性响应式系统的核心诉求是在有
- Mybatisplus的雪花算法及代码生成器的使用
你我约定有三
算法dreamweaver
1.雪花算法1.1背景:雪花算法(Snowflake)的使用背景主要源于高并发分布式系统环境下对唯一ID生成的需求。这种需求在像Twitter这样的社交媒体平台上尤为突出,因为Twitter需要处理每秒上万条消息的请求,并且每条消息都必须分配一个唯一的ID。这些ID不仅需要全局唯一,以跨机器、跨时间区分,还需要保持一定的顺序性(尽管不要求连续),以方便客户端排序和后续的数据处理。1.2与自动递增的
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 【链路追踪】
WIN赢
面试专栏性能优化自动化
一、什么是链路追踪链路追踪(Tracing)是一种用于分布式系统中跟踪请求处理过程的技术。它通过记录一次请求在多个服务之间的流转路径、耗时、状态等信息,帮助开发人员快速定位问题、分析性能瓶颈,并理解系统中各组件的交互关系。链路追踪不仅是一种强大的监控手段,也是测试人员在分布式系统中不可或缺的测试工具。它能够帮助测试人员快速定位问题、分析性能瓶颈,并优化系统性能,从而提高测试效率和质量二、核心概念T
- Kafka事务机制详解
一碗黄焖鸡三碗米饭
Kafka全景解析kafka分布式Java副本事务分区大数据
目录Kafka事务机制详解1.Kafka中的事务概述2.Kafka事务的基本概念2.1精确一次处理(ExactlyOnceSemantics,EOS)2.2Kafka事务的工作流程3.Kafka事务的配置与使用3.1生产者端的事务配置3.2消费者端的事务配置4.Kafka事务的优势与限制4.1Kafka事务的优势4.2Kafka事务的限制5.总结在分布式系统中,事务性操作(如数据库事务)是非常重要
- 一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥密
落霞归雁
AI编程教育电商微信开放平台rabbitmq中间件
一句话读懂Kafka:5W1H带你解锁分布式消息队列的奥秘在当今数字化时代,消息队列(MessageQueue,简称MQ)已经成为分布式系统中不可或缺的组件,而ApacheKafka作为其中的佼佼者,以其卓越的性能和广泛的应用场景脱颖而出。今天,就让我们用一句话读懂Kafka,并通过5W1H(What、Why、Who、When、Where、How)的方式,深入剖析它的核心价值与技术魅力。一句话读懂
- zookeeper和hadoop
zookeeper操作连接zkCli.sh-server服务名称查看客户端指令helpZooKeeper-serverhost:portcmdargs statpath[watch] setpathdata[version] lspath[watch] delquota[-n|-b]path ls2path[watch] setAclpathacl setquot
- Hadoop 之 ZooKeeper (一)
devalone
HadoopHadoopZooKeeperHbaseChubbyznode
Hadoop之ZooKeeper本文介绍使用Hadoop的分布式协调服务构建通用的分布式应用——ZooKeeper。ZooKeeper是Hadoop分布式协调服务。写分布式应用是比较难的,主要是因为部分失败(partialfailure).当一条消息通过网络在两个节点间发送时,如果发生网络错误,发送者无法知道接受者是否接收到了这条消息。接收者可能在发生网络错误之前已经收到了这条消息,也可能没有收到
- ZooKeeper在Hadoop中的协同应用:从NameNode选主到分布式锁实现
码字的字节
hadoop布道师分布式zookeeperhadoop分布式锁
Hadoop与ZooKeeper概述Hadoop与ZooKeeper在大数据生态系统中的核心位置和交互关系Hadoop的架构与核心组件作为大数据处理的基石,Hadoop生态系统由多个关键组件构成。其核心架构主要包含HDFS(HadoopDistributedFileSystem)和YARN(YetAnotherResourceNegotiator)两大模块。HDFS采用主从架构设计,由NameNo
- Azure-in-bullet-points项目解析:深入理解Azure Service Fabric架构与技术实践
萧桔格Wilbur
Azure-in-bullet-points项目解析:深入理解AzureServiceFabric架构与技术实践一、AzureServiceFabric概述AzureServiceFabric是微软提供的分布式系统平台,专为构建和管理可扩展、可靠的微服务而设计。作为云原生应用开发的核心技术,它解决了现代分布式系统开发中的诸多挑战。核心特性集群管理能力:基于共享机器池(集群)构建,实现资源的高效利用
- 从 0 到 1 学会 Resilience4j——Java 服务稳如老狗的“护身符”(小白也能看懂)
一、为什么我们需要“护身符”?想象一个场景:你的系统调用支付接口,支付服务突然挂了,请求像潮水一样堵在门口,结果整个应用也被拖垮——这就是级联故障。传统做法:try-catch?只能捕获异常,无法阻止流量继续涌入。线程池隔离?太重,门槛高。在现代分布式系统中,服务间的调用复杂度显著增加。当某个服务出现故障时,如果不加以控制,可能会引发级联故障(CascadingFailure),最终导致整个系统崩
- OneCode 3.0 VFS客户端驱动(SDK)技术解析:从架构到实战
低代码老李
OneCode实战低代码软件行业架构云原生低代码
引言在分布式系统架构中,高效的文件管理一直是开发者面临的核心挑战。OneCode3.0作为新一代微内核引擎,其VFS(虚拟文件系统)模块通过客户端驱动(SDK)提供了统一的文件操作抽象,屏蔽了底层存储细节,为开发者带来了极大便利。本文将深入剖析VFS客户端驱动的架构设计、核心API及实战应用,帮助开发者快速掌握其使用方法。一、VFS客户端驱动架构概览1.1架构定位VFS客户端驱动是OneCode3
- Qt 远程过程调用(RPC)实现方案
编程与实战
Qt一站式学习qtrpc系统架构c语言c++
在分布式系统开发中,远程过程调用(RPC)是实现跨进程、跨机器通信的重要技术。Qt作为一个强大的跨平台框架,提供了多种RPC实现方案,能够满足不同场景下的通信需求。本文将深入探讨Qt中RPC的各种实现方式,包括QtRemoteObjects、自定义协议实现、第三方库集成等,并分析各自的优缺点和适用场景。一、QtRemoteObjects框架1.基础概念与架构QtRemoteObjects是Qt官方
- 从 0 到 1 精通 MQTT 协议
一叶飘零_sweeeet
果酱紫javaMQTT物联网
从0到1精通MQTT协议:Java开发者必看的物联网通信指南作为一名Javaer,你可能早已在分布式系统、微服务架构中摸爬滚打多年。但当面对物联网(IoT)、边缘计算等新兴领域时,是否曾被设备间的低带宽、高延迟通信难题困住?今天,我们要深入探讨的MQTT协议,正是解决这类问题的"瑞士军刀"。本文将从协议底层原理讲起,结合完整的Java实现案例,带你掌握从客户端开发到broker部署的全流程技能。无
- 大数据开发系列(六)----Hive3.0.0安装配置以及Mysql5.7安装配置
Xiaoyeforever
hivemysqlhivehadoop数据库
一、Hive3.0.0安装配置:(Hive3.1.2有BUG)hadoop3.1.2Hive各个版本下载地址:http://archive.apache.org/dist/hive/,这里我们下载hive3.0.01、解压:tar-xzvfapache-hive-3.0.0-bin.tar.gz-C/usr/lib/JDK_2021cd/usr/lib/JDK_20212.改名称.将解压以后的文件
- 光伏环境监测站:为光伏电站撑起 “保护伞”
柏峰电子
人工智能
光伏环境监测站:为光伏电站撑起“保护伞”柏峰【BF-GFQX】光伏电站的高效运转,离不开对周边环境的精准把控。无论是广袤沙漠中的大型地面电站,还是城市屋顶的分布式系统,都时刻受到光照、温度、风沙、降水等环境因素的影响。光伏环境监测站就像一位全能的“环境管家”,24小时监测各种环境参数,为电站的安全运行和效率优化提供全方位的数据支撑,让每一块光伏板都能在最佳环境中发挥最大效能。一、系统构成:全方位的
- 大数据编程基础
芝麻开门-新的起点
大数据大数据
3.1Java基础(重点)内容讲解Java是大数据领域最重要的编程语言之一。Hadoop、HBase、Elasticsearch等众多核心框架都是用Java开发的。因此,扎实的Java基础对于深入理解这些框架的底层原理和进行二次开发至关重要。为什么Java在大数据领域如此重要?生态系统:Hadoop生态系统原生就是Java构建的,使用Java进行开发可以无缝集成。跨平台性:Java的“一次编译,到
- 1、kubernetes 1.5.2原理以及集群HA部署
yongbang_yan
运维容器
Kubernetes是什么?1.是一个全新的基于容器技术的分布式架构,是谷歌的Borg技术的一个开源版本Borg是谷歌的一个久负盛名的内部使用的大规模集群管理系统,基于容器技术,目的是实现资源管理的自动化,垮多个数据中心的资源利用率的最大化2.Kubernetes是一个开放的平台。不局限于任何一种语言,没有限定任何编程接口。3.Kubernetes是一个完备的分布式系统支持平台。Kubernete
- 北大区块链技术与应用 笔记
好学且牛逼的马
区块链
以下是北京大学肖臻老师《区块链技术与应用》公开课的完整教学大纲,综合课程内容、技术模块及前沿扩展,分为核心章节与专题拓展两部分,引用自公开课资料及学员笔记。一、课程概述与教学目标课程定位系统讲解区块链底层技术原理(密码学、数据结构、共识协议)与典型应用场景(比特币、以太坊生态)。面向计算机科学、金融科技、分布式系统领域的学习者,强调理论与工程实践结合。核心目标掌握区块链安全机制设计思想(如去中心化
- 秋招Day19 - 分布式 - 分布式设计
Java初学者小白
八股#分布式分布式java
什么是幂等性?多次调用的效果和一次调用的效果一样,比如DELETE操作,执行多次的结果和执行一次的结果对数据库的影响是一样的。有些操作不满足幂等性,比如INSERT操作,用户点击了两次表单,数据库就有两条重复的记录。MQ消费者在读取消息的时候,也有可能读取到重复消息。在分布式系统里,只要下游服务有写操作(插入、更新),就有可能出现幂等性问题。怎么保证接口幂等性?insert前先select在保存数
- 深入解析HBase如何保证强一致性:WAL日志与MVCC机制
码字的字节
hadoop布道师hadoopHBaseWALMVCC
HBase强一致性的重要性在分布式数据库系统中,强一致性是确保数据可靠性和系统可信度的核心支柱。作为Hadoop生态系统中关键的列式存储数据库,HBase需要处理金融交易、实时风控等高敏感场景下的海量数据操作,这使得强一致性成为其设计架构中不可妥协的基础特性。分布式环境下的数据一致性挑战在典型的HBase部署环境中,数据被分散存储在多个RegionServer节点上,同时面临以下核心挑战:1.跨节
- Hadoop中MapReduce和Yarn相关内容详解
接上一章写的HDFS说,Hadoop是一个适合海量数据的分布式存储和分布式计算的一个平台,上一章介绍了分布式存储,这一章介绍一下分布式计算——MapReduce。一、MapReduce设计理念map——>映射Reduce——>归纳mapreduce是一种必须构建在hadoop之上的大数据离线计算框架。因为mapreduce是给予磁盘IO来计算存储文件的,所以它具有一定的延时性,因此一般用来处理离线
- 阿里云MaxCompute SQL与Apache Hive区别面面观
大模型大数据攻城狮
阿里云odpssql物化maxcomputeudf开发sql语法
目录1.引爆开场:MaxCompute和Hive,谁才是大数据SQL的王者?2.架构大比拼:从Hadoop到Serverless的进化之路Hive的架构:老派但经典MaxCompute的架构:云原生新贵3.SQL语法的微妙差异:90%相似,10%决定胜负建表语句分区与分桶函数与UDF4.执行引擎的较量:MapReducevs飞天引擎Hive的MapReduce执行流程MaxCompute的飞天引擎
- 一文说清楚Hive
Hive作为ApacheHadoop生态的核心数据仓库工具,其设计初衷是为熟悉SQL的用户提供大规模数据离线处理能力。以下从底层计算框架、优点、场景、注意事项及实践案例五个维度展开说明。一、Hive底层分布式计算框架对比Hive本身不直接执行计算,而是将HQL转换为底层计算引擎的任务。目前支持的主流引擎及其特点如下:计算引擎核心原理优点缺点适用场景MapReduce基于“Map→Shuffle→R
- HBase 简介
HBase简介什么是HBaseApacheHBase是Hadoop数据库,一个分布式的、可伸缩的大数据存储。当您需要对大数据进行随机的、实时的读/写访问时,请使用ApacheHBase。这个项目的目标是在商品硬件的集群上托管非常大的表——数十亿行百万列的列。ApacheHBase是一个开源的、分布式的、版本化的、非关系的数据库,它模仿了Google的Bigtable:一个结构化数据的分布式存储系统
- 《Effective Python》总结
不学无术の码农
EffectivePython精读笔记python开发语言
引言Python以其简洁的语法、强大的标准库和广泛的应用场景,成为编程领域的支柱语言之一。从Web开发、数据科学到自动化脚本和分布式系统,Python的灵活性使其在各类项目中大放异彩。然而,编写高效、可读性强且易于维护的Python代码并非易事,需要深入理解语言的设计哲学、最佳实践和现代特性。《EffectivePython:125SpecificWaystoWriteBetterPython,3
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla