基于pytorch的目标检测(rcnn+resnet50,行人数据集)

import torch
torch.cuda.is_available()
True
!pip install cython
# Install pycocotools, the version by default in Colab
# has a bug fixed in https://github.com/cocodataset/cocoapi/pull/354
!pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'
Requirement already satisfied: cython in /home/qy/.conda/envs/pytorch/lib/python3.6/site-packages (0.29.19)
Collecting git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
  Cloning https://github.com/cocodataset/cocoapi.git to /tmp/pip-req-build-al3q5nlj
  Running command git clone -q https://github.com/cocodataset/cocoapi.git /tmp/pip-req-build-al3q5nlj
Requirement already satisfied, skipping upgrade: setuptools>=18.0 in /home/qy/.conda/envs/pytorch/lib/python3.6/site-packages (from pycocotools==2.0) (46.4.0.post20200518)
Requirement already satisfied, skipping upgrade: cython>=0.27.3 in /home/qy/.conda/envs/pytorch/lib/python3.6/site-packages (from pycocotools==2.0) (0.29.19)
Collecting matplotlib>=2.1.0
  Downloading matplotlib-3.2.1-cp36-cp36m-manylinux1_x86_64.whl (12.4 MB)
     |████████████████████████████████| 12.4 MB 7.0 MB/s eta 0:00:01
[?25hCollecting kiwisolver>=1.0.1
  Downloading kiwisolver-1.2.0-cp36-cp36m-manylinux1_x86_64.whl (88 kB)
     |████████████████████████████████| 88 kB 837 kB/s  eta 0:00:01
[?25hCollecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1
  Downloading pyparsing-2.4.7-py2.py3-none-any.whl (67 kB)
     |████████████████████████████████| 67 kB 867 kB/s s eta 0:00:01
[?25hRequirement already satisfied, skipping upgrade: python-dateutil>=2.1 in /home/qy/.conda/envs/pytorch/lib/python3.6/site-packages (from matplotlib>=2.1.0->pycocotools==2.0) (2.8.1)
Collecting cycler>=0.10
  Downloading cycler-0.10.0-py2.py3-none-any.whl (6.5 kB)
Requirement already satisfied, skipping upgrade: numpy>=1.11 in /home/qy/.conda/envs/pytorch/lib/python3.6/site-packages (from matplotlib>=2.1.0->pycocotools==2.0) (1.18.1)
Requirement already satisfied, skipping upgrade: six>=1.5 in /home/qy/.conda/envs/pytorch/lib/python3.6/site-packages (from python-dateutil>=2.1->matplotlib>=2.1.0->pycocotools==2.0) (1.14.0)
Building wheels for collected packages: pycocotools
  Building wheel for pycocotools (setup.py) ... [?25ldone
[?25h  Created wheel for pycocotools: filename=pycocotools-2.0-cp36-cp36m-linux_x86_64.whl size=282788 sha256=5e2c6293ef8c17974cee3aeccb1cce1b9c57e5890a4670db02b4e46cbe90bef6
  Stored in directory: /tmp/pip-ephem-wheel-cache-p2ts_ztv/wheels/25/c1/63/8bee2969883497d2785c9bdbe4e89cae5efc59521553d528bf
Successfully built pycocotools
Installing collected packages: kiwisolver, pyparsing, cycler, matplotlib, pycocotools
Successfully installed cycler-0.10.0 kiwisolver-1.2.0 matplotlib-3.2.1 pycocotools-2.0 pyparsing-2.4.7
from PIL import Image
Image.open('PennFudanPed/PNGImages/FudanPed00001.png')

基于pytorch的目标检测(rcnn+resnet50,行人数据集)_第1张图片

mask = Image.open('PennFudanPed/PedMasks/FudanPed00001_mask.png')
# each mask instance has a different color, from zero to N, where
# N is the number of instances. In order to make visualization easier,
# let's adda color palette to the mask.
mask.putpalette([
    0, 0, 0, # black background
    255, 0, 0, # index 1 is red
    255, 255, 0, # index 2 is yellow
    255, 153, 0, # index 3 is orange
])
mask

基于pytorch的目标检测(rcnn+resnet50,行人数据集)_第2张图片

import os
import numpy as np
import torch
import torch.utils.data
from PIL import Image


class PennFudanDataset(torch.utils.data.Dataset):
    def __init__(self, root, transforms=None):
        self.root = root
        self.transforms = transforms
        # load all image files, sorting them to
        # ensure that they are aligned
        self.imgs = list(sorted(os.listdir(os.path.join(root, "PNGImages"))))
        self.masks = list(sorted(os.listdir(os.path.join(root, "PedMasks"))))

    def __getitem__(self, idx):
        # load images ad masks
        img_path = os.path.join(self.root, "PNGImages", self.imgs[idx])
        mask_path = os.path.join(self.root, "PedMasks", self.masks[idx])
        img = Image.open(img_path).convert("RGB")
        # note that we haven't converted the mask to RGB,
        # because each color corresponds to a different instance
        # with 0 being background
        mask = Image.open(mask_path)

        mask = np.array(mask)
        # instances are encoded as different colors
        obj_ids = np.unique(mask)
        # first id is the background, so remove it
        obj_ids = obj_ids[1:]

        # split the color-encoded mask into a set
        # of binary masks
        masks = mask == obj_ids[:, None, None]

        # get bounding box coordinates for each mask
        num_objs = len(obj_ids)
        boxes = []
        for i in range(num_objs):
            pos = np.where(masks[i])
            xmin = np.min(pos[1])
            xmax = np.max(pos[1])
            ymin = np.min(pos[0])
            ymax = np.max(pos[0])
            boxes.append([xmin, ymin, xmax, ymax])

        boxes = torch.as_tensor(boxes, dtype=torch.float32)
        # there is only one class
        labels = torch.ones((num_objs,), dtype=torch.int64)
        masks = torch.as_tensor(masks, dtype=torch.uint8)

        image_id = torch.tensor([idx])
        area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
        # suppose all instances are not crowd
        iscrowd = torch.zeros((num_objs,), dtype=torch.int64)

        target = {}
        target["boxes"] = boxes
        target["labels"] = labels
        target["masks"] = masks
        target["image_id"] = image_id
        target["area"] = area
        target["iscrowd"] = iscrowd

        if self.transforms is not None:
            img, target = self.transforms(img, target)

        return img, target

    def __len__(self):
        return len(self.imgs)
dataset = PennFudanDataset('PennFudanPed/')
dataset[0]
(,
 {'boxes': tensor([[159., 181., 301., 430.],
          [419., 170., 534., 485.]]),
  'labels': tensor([1, 1]),
  'masks': tensor([[[0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0],
           ...,
           [0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0]],
  
          [[0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0],
           ...,
           [0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0],
           [0, 0, 0,  ..., 0, 0, 0]]], dtype=torch.uint8),
  'image_id': tensor([0]),
  'area': tensor([35358., 36225.]),
  'iscrowd': tensor([0, 0])})
import torchvision
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor

      
def get_instance_segmentation_model(num_classes):
    # load an instance segmentation model pre-trained on COCO
    model = torchvision.models.detection.maskrcnn_resnet50_fpn(pretrained=True)

    # get the number of input features for the classifier
    in_features = model.roi_heads.box_predictor.cls_score.in_features
    # replace the pre-trained head with a new one
    model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)

    # now get the number of input features for the mask classifier
    in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
    hidden_layer = 256
    # and replace the mask predictor with a new one
    model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask,
                                                       hidden_layer,
                                                       num_classes)

    return model
from engine import train_one_epoch, evaluate
import utils
import transforms as T


def get_transform(train):
    transforms = []
    # converts the image, a PIL image, into a PyTorch Tensor
    transforms.append(T.ToTensor())
    if train:
        # during training, randomly flip the training images
        # and ground-truth for data augmentation
        transforms.append(T.RandomHorizontalFlip(0.5))
    return T.Compose(transforms)
# use our dataset and defined transformations
dataset = PennFudanDataset('PennFudanPed', get_transform(train=True))
dataset_test = PennFudanDataset('PennFudanPed', get_transform(train=False))

# split the dataset in train and test set
torch.manual_seed(1)
indices = torch.randperm(len(dataset)).tolist()
dataset = torch.utils.data.Subset(dataset, indices[:-50])
dataset_test = torch.utils.data.Subset(dataset_test, indices[-50:])

# define training and validation data loaders
data_loader = torch.utils.data.DataLoader(
    dataset, batch_size=2, shuffle=True, num_workers=4,
    collate_fn=utils.collate_fn)

data_loader_test = torch.utils.data.DataLoader(
    dataset_test, batch_size=1, shuffle=False, num_workers=4,
    collate_fn=utils.collate_fn)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')

# our dataset has two classes only - background and person
num_classes = 2

# get the model using our helper function
model = get_instance_segmentation_model(num_classes)
# move model to the right device
model.to(device)

# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005,
                            momentum=0.9, weight_decay=0.0005)

# and a learning rate scheduler which decreases the learning rate by
# 10x every 3 epochs
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                               step_size=3,
                                               gamma=0.1)
Downloading: "https://download.pytorch.org/models/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth" to /home/qy/.cache/torch/checkpoints/maskrcnn_resnet50_fpn_coco-bf2d0c1e.pth
75.3%IOPub message rate exceeded.
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_msg_rate_limit`.

Current values:
NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec)
NotebookApp.rate_limit_window=3.0 (secs)

97.2%IOPub message rate exceeded.
The notebook server will temporarily stop sending output
to the client in order to avoid crashing it.
To change this limit, set the config variable
`--NotebookApp.iopub_msg_rate_limit`.

Current values:
NotebookApp.iopub_msg_rate_limit=1000.0 (msgs/sec)
NotebookApp.rate_limit_window=3.0 (secs)
# let's train it for 10 epochs
num_epochs = 10

for epoch in range(num_epochs):
    # train for one epoch, printing every 10 iterations
    train_one_epoch(model, optimizer, data_loader, device, epoch, print_freq=10)
    # update the learning rate
    lr_scheduler.step()
    # evaluate on the test dataset
    evaluate(model, data_loader_test, device=device)
/home/qy/.conda/envs/pytorch/lib/python3.6/site-packages/torch/nn/functional.py:2854: UserWarning: The default behavior for interpolate/upsample with float scale_factor will change in 1.6.0 to align with other frameworks/libraries, and use scale_factor directly, instead of relying on the computed output size. If you wish to keep the old behavior, please set recompute_scale_factor=True. See the documentation of nn.Upsample for details. 
  warnings.warn("The default behavior for interpolate/upsample with float scale_factor will change "
/opt/conda/conda-bld/pytorch_1587428091666/work/torch/csrc/utils/python_arg_parser.cpp:756: UserWarning: This overload of nonzero is deprecated:
	nonzero(Tensor input, *, Tensor out)
Consider using one of the following signatures instead:
	nonzero(Tensor input, *, bool as_tuple)


Epoch: [0]  [ 0/60]  eta: 0:02:38  lr: 0.000090  loss: 3.5733 (3.5733)  loss_classifier: 0.7385 (0.7385)  loss_box_reg: 0.1523 (0.1523)  loss_mask: 2.6620 (2.6620)  loss_objectness: 0.0130 (0.0130)  loss_rpn_box_reg: 0.0076 (0.0076)  time: 2.6334  data: 0.0967  max mem: 2303
Epoch: [0]  [10/60]  eta: 0:00:47  lr: 0.000936  loss: 1.5685 (2.1198)  loss_classifier: 0.4478 (0.4967)  loss_box_reg: 0.1842 (0.1909)  loss_mask: 0.9258 (1.4014)  loss_objectness: 0.0196 (0.0203)  loss_rpn_box_reg: 0.0090 (0.0105)  time: 0.9557  data: 0.0131  max mem: 2859
Epoch: [0]  [20/60]  eta: 0:00:34  lr: 0.001783  loss: 0.8704 (1.4306)  loss_classifier: 0.2360 (0.3400)  loss_box_reg: 0.1570 (0.1740)  loss_mask: 0.4029 (0.8831)  loss_objectness: 0.0196 (0.0215)  loss_rpn_box_reg: 0.0099 (0.0120)  time: 0.7708  data: 0.0041  max mem: 2862
Epoch: [0]  [30/60]  eta: 0:00:25  lr: 0.002629  loss: 0.5294 (1.1183)  loss_classifier: 0.0927 (0.2557)  loss_box_reg: 0.1266 (0.1603)  loss_mask: 0.2426 (0.6747)  loss_objectness: 0.0060 (0.0160)  loss_rpn_box_reg: 0.0099 (0.0116)  time: 0.7823  data: 0.0036  max mem: 3595
Epoch: [0]  [40/60]  eta: 0:00:16  lr: 0.003476  loss: 0.4095 (0.9466)  loss_classifier: 0.0617 (0.2089)  loss_box_reg: 0.1078 (0.1514)  loss_mask: 0.2057 (0.5606)  loss_objectness: 0.0037 (0.0133)  loss_rpn_box_reg: 0.0116 (0.0124)  time: 0.8173  data: 0.0039  max mem: 3595
Epoch: [0]  [50/60]  eta: 0:00:08  lr: 0.004323  loss: 0.3405 (0.8259)  loss_classifier: 0.0479 (0.1784)  loss_box_reg: 0.0890 (0.1383)  loss_mask: 0.1798 (0.4847)  loss_objectness: 0.0025 (0.0118)  loss_rpn_box_reg: 0.0116 (0.0128)  time: 0.8091  data: 0.0041  max mem: 3595
Epoch: [0]  [59/60]  eta: 0:00:00  lr: 0.005000  loss: 0.2562 (0.7363)  loss_classifier: 0.0415 (0.1567)  loss_box_reg: 0.0532 (0.1233)  loss_mask: 0.1564 (0.4340)  loss_objectness: 0.0010 (0.0101)  loss_rpn_box_reg: 0.0107 (0.0122)  time: 0.7992  data: 0.0039  max mem: 3595
Epoch: [0] Total time: 0:00:49 (0.8252 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:10  model_time: 0.1355 (0.1355)  evaluator_time: 0.0021 (0.0021)  time: 0.2005  data: 0.0621  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1479 (0.1476)  evaluator_time: 0.0023 (0.0042)  time: 0.1541  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1560 s / it)
Averaged stats: model_time: 0.1479 (0.1476)  evaluator_time: 0.0023 (0.0042)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.690
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.983
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.871
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.390
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.700
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.312
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.746
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.746
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.747
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.694
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.983
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.882
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.373
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.708
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.314
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.735
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.736
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.650
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.742
Epoch: [1]  [ 0/60]  eta: 0:00:47  lr: 0.005000  loss: 0.1709 (0.1709)  loss_classifier: 0.0213 (0.0213)  loss_box_reg: 0.0298 (0.0298)  loss_mask: 0.1055 (0.1055)  loss_objectness: 0.0015 (0.0015)  loss_rpn_box_reg: 0.0128 (0.0128)  time: 0.7915  data: 0.0902  max mem: 3595
Epoch: [1]  [10/60]  eta: 0:00:40  lr: 0.005000  loss: 0.2111 (0.2462)  loss_classifier: 0.0332 (0.0370)  loss_box_reg: 0.0318 (0.0406)  loss_mask: 0.1447 (0.1562)  loss_objectness: 0.0009 (0.0011)  loss_rpn_box_reg: 0.0124 (0.0113)  time: 0.8176  data: 0.0112  max mem: 3595
Epoch: [1]  [20/60]  eta: 0:00:32  lr: 0.005000  loss: 0.2571 (0.2645)  loss_classifier: 0.0402 (0.0460)  loss_box_reg: 0.0350 (0.0439)  loss_mask: 0.1626 (0.1598)  loss_objectness: 0.0009 (0.0016)  loss_rpn_box_reg: 0.0129 (0.0132)  time: 0.8183  data: 0.0037  max mem: 3595
Epoch: [1]  [30/60]  eta: 0:00:24  lr: 0.005000  loss: 0.2145 (0.2412)  loss_classifier: 0.0367 (0.0404)  loss_box_reg: 0.0284 (0.0365)  loss_mask: 0.1468 (0.1511)  loss_objectness: 0.0009 (0.0013)  loss_rpn_box_reg: 0.0086 (0.0118)  time: 0.8109  data: 0.0042  max mem: 3595
Epoch: [1]  [40/60]  eta: 0:00:16  lr: 0.005000  loss: 0.2021 (0.2345)  loss_classifier: 0.0317 (0.0404)  loss_box_reg: 0.0219 (0.0337)  loss_mask: 0.1344 (0.1476)  loss_objectness: 0.0006 (0.0016)  loss_rpn_box_reg: 0.0079 (0.0112)  time: 0.8123  data: 0.0041  max mem: 3595
Epoch: [1]  [50/60]  eta: 0:00:08  lr: 0.005000  loss: 0.2033 (0.2319)  loss_classifier: 0.0358 (0.0412)  loss_box_reg: 0.0232 (0.0330)  loss_mask: 0.1293 (0.1442)  loss_objectness: 0.0006 (0.0018)  loss_rpn_box_reg: 0.0080 (0.0118)  time: 0.8298  data: 0.0039  max mem: 3595
Epoch: [1]  [59/60]  eta: 0:00:00  lr: 0.005000  loss: 0.1682 (0.2241)  loss_classifier: 0.0298 (0.0400)  loss_box_reg: 0.0174 (0.0306)  loss_mask: 0.1251 (0.1404)  loss_objectness: 0.0004 (0.0018)  loss_rpn_box_reg: 0.0080 (0.0112)  time: 0.8060  data: 0.0038  max mem: 3595
Epoch: [1] Total time: 0:00:48 (0.8142 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:10  model_time: 0.1453 (0.1453)  evaluator_time: 0.0022 (0.0022)  time: 0.2145  data: 0.0661  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1585 (0.1521)  evaluator_time: 0.0025 (0.0036)  time: 0.1635  data: 0.0020  max mem: 3595
Test: Total time: 0:00:08 (0.1602 s / it)
Averaged stats: model_time: 0.1585 (0.1521)  evaluator_time: 0.0025 (0.0036)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.771
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.988
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.937
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.524
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.781
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.358
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.820
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.820
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.826
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.763
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.988
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.916
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.389
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.773
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.346
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.797
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.797
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.713
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.803
Epoch: [2]  [ 0/60]  eta: 0:00:53  lr: 0.005000  loss: 0.1299 (0.1299)  loss_classifier: 0.0173 (0.0173)  loss_box_reg: 0.0072 (0.0072)  loss_mask: 0.0994 (0.0994)  loss_objectness: 0.0007 (0.0007)  loss_rpn_box_reg: 0.0053 (0.0053)  time: 0.8846  data: 0.0853  max mem: 3595
Epoch: [2]  [10/60]  eta: 0:00:40  lr: 0.005000  loss: 0.1884 (0.1756)  loss_classifier: 0.0315 (0.0306)  loss_box_reg: 0.0154 (0.0166)  loss_mask: 0.1135 (0.1197)  loss_objectness: 0.0004 (0.0006)  loss_rpn_box_reg: 0.0066 (0.0081)  time: 0.8066  data: 0.0110  max mem: 3595
Epoch: [2]  [20/60]  eta: 0:00:31  lr: 0.005000  loss: 0.1510 (0.1623)  loss_classifier: 0.0189 (0.0246)  loss_box_reg: 0.0119 (0.0133)  loss_mask: 0.1107 (0.1166)  loss_objectness: 0.0002 (0.0007)  loss_rpn_box_reg: 0.0048 (0.0071)  time: 0.7697  data: 0.0037  max mem: 3595
Epoch: [2]  [30/60]  eta: 0:00:23  lr: 0.005000  loss: 0.1591 (0.1821)  loss_classifier: 0.0207 (0.0295)  loss_box_reg: 0.0104 (0.0172)  loss_mask: 0.1164 (0.1260)  loss_objectness: 0.0003 (0.0007)  loss_rpn_box_reg: 0.0074 (0.0086)  time: 0.7821  data: 0.0038  max mem: 3595
Epoch: [2]  [40/60]  eta: 0:00:15  lr: 0.005000  loss: 0.1827 (0.1824)  loss_classifier: 0.0289 (0.0286)  loss_box_reg: 0.0144 (0.0167)  loss_mask: 0.1318 (0.1276)  loss_objectness: 0.0003 (0.0008)  loss_rpn_box_reg: 0.0077 (0.0087)  time: 0.8254  data: 0.0041  max mem: 3595
Epoch: [2]  [50/60]  eta: 0:00:08  lr: 0.005000  loss: 0.1878 (0.1862)  loss_classifier: 0.0298 (0.0290)  loss_box_reg: 0.0154 (0.0176)  loss_mask: 0.1324 (0.1297)  loss_objectness: 0.0003 (0.0009)  loss_rpn_box_reg: 0.0083 (0.0091)  time: 0.8146  data: 0.0039  max mem: 3595
Epoch: [2]  [59/60]  eta: 0:00:00  lr: 0.005000  loss: 0.1878 (0.1876)  loss_classifier: 0.0323 (0.0300)  loss_box_reg: 0.0160 (0.0176)  loss_mask: 0.1293 (0.1294)  loss_objectness: 0.0005 (0.0010)  loss_rpn_box_reg: 0.0094 (0.0095)  time: 0.8387  data: 0.0037  max mem: 3595
Epoch: [2] Total time: 0:00:48 (0.8130 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:09  model_time: 0.1336 (0.1336)  evaluator_time: 0.0022 (0.0022)  time: 0.1977  data: 0.0612  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1465 (0.1468)  evaluator_time: 0.0020 (0.0031)  time: 0.1518  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1542 s / it)
Averaged stats: model_time: 0.1465 (0.1468)  evaluator_time: 0.0020 (0.0031)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.803
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.989
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.946
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.470
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.813
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.371
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.841
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.841
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.762
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.847
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.745
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.989
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.925
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.401
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.762
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.345
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.783
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.783
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.613
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.795
Epoch: [3]  [ 0/60]  eta: 0:00:57  lr: 0.000500  loss: 0.1744 (0.1744)  loss_classifier: 0.0190 (0.0190)  loss_box_reg: 0.0126 (0.0126)  loss_mask: 0.1370 (0.1370)  loss_objectness: 0.0001 (0.0001)  loss_rpn_box_reg: 0.0057 (0.0057)  time: 0.9517  data: 0.1323  max mem: 3595
Epoch: [3]  [10/60]  eta: 0:00:43  lr: 0.000500  loss: 0.1701 (0.1784)  loss_classifier: 0.0271 (0.0279)  loss_box_reg: 0.0121 (0.0151)  loss_mask: 0.1171 (0.1272)  loss_objectness: 0.0006 (0.0007)  loss_rpn_box_reg: 0.0060 (0.0076)  time: 0.8605  data: 0.0146  max mem: 3595
Epoch: [3]  [20/60]  eta: 0:00:33  lr: 0.000500  loss: 0.1639 (0.1734)  loss_classifier: 0.0271 (0.0275)  loss_box_reg: 0.0099 (0.0138)  loss_mask: 0.1199 (0.1235)  loss_objectness: 0.0003 (0.0007)  loss_rpn_box_reg: 0.0060 (0.0079)  time: 0.8288  data: 0.0034  max mem: 3595
Epoch: [3]  [30/60]  eta: 0:00:24  lr: 0.000500  loss: 0.1571 (0.1701)  loss_classifier: 0.0241 (0.0262)  loss_box_reg: 0.0085 (0.0129)  loss_mask: 0.1203 (0.1229)  loss_objectness: 0.0004 (0.0008)  loss_rpn_box_reg: 0.0055 (0.0073)  time: 0.7733  data: 0.0038  max mem: 3595
Epoch: [3]  [40/60]  eta: 0:00:16  lr: 0.000500  loss: 0.1577 (0.1724)  loss_classifier: 0.0245 (0.0269)  loss_box_reg: 0.0108 (0.0133)  loss_mask: 0.1130 (0.1232)  loss_objectness: 0.0007 (0.0009)  loss_rpn_box_reg: 0.0065 (0.0082)  time: 0.7781  data: 0.0038  max mem: 3595
Epoch: [3]  [50/60]  eta: 0:00:08  lr: 0.000500  loss: 0.1741 (0.1774)  loss_classifier: 0.0278 (0.0275)  loss_box_reg: 0.0116 (0.0143)  loss_mask: 0.1303 (0.1265)  loss_objectness: 0.0004 (0.0009)  loss_rpn_box_reg: 0.0078 (0.0082)  time: 0.8271  data: 0.0040  max mem: 3595
Epoch: [3]  [59/60]  eta: 0:00:00  lr: 0.000500  loss: 0.1501 (0.1721)  loss_classifier: 0.0269 (0.0266)  loss_box_reg: 0.0093 (0.0133)  loss_mask: 0.1049 (0.1231)  loss_objectness: 0.0003 (0.0009)  loss_rpn_box_reg: 0.0078 (0.0081)  time: 0.8225  data: 0.0041  max mem: 3595
Epoch: [3] Total time: 0:00:48 (0.8145 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:09  model_time: 0.1334 (0.1334)  evaluator_time: 0.0021 (0.0021)  time: 0.1983  data: 0.0620  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1473 (0.1432)  evaluator_time: 0.0019 (0.0030)  time: 0.1507  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1504 s / it)
Averaged stats: model_time: 0.1473 (0.1432)  evaluator_time: 0.0019 (0.0030)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.817
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.941
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.476
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.829
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.378
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.861
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.861
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.762
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.868
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.765
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.919
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.448
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.777
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.350
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.803
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.803
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.700
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.811
Epoch: [4]  [ 0/60]  eta: 0:00:42  lr: 0.000500  loss: 0.1048 (0.1048)  loss_classifier: 0.0069 (0.0069)  loss_box_reg: 0.0029 (0.0029)  loss_mask: 0.0903 (0.0903)  loss_objectness: 0.0001 (0.0001)  loss_rpn_box_reg: 0.0046 (0.0046)  time: 0.7136  data: 0.0856  max mem: 3595
Epoch: [4]  [10/60]  eta: 0:00:40  lr: 0.000500  loss: 0.1483 (0.1592)  loss_classifier: 0.0231 (0.0214)  loss_box_reg: 0.0106 (0.0124)  loss_mask: 0.1064 (0.1175)  loss_objectness: 0.0002 (0.0004)  loss_rpn_box_reg: 0.0076 (0.0075)  time: 0.8011  data: 0.0111  max mem: 3595
Epoch: [4]  [20/60]  eta: 0:00:31  lr: 0.000500  loss: 0.1483 (0.1608)  loss_classifier: 0.0231 (0.0229)  loss_box_reg: 0.0079 (0.0115)  loss_mask: 0.1064 (0.1193)  loss_objectness: 0.0002 (0.0004)  loss_rpn_box_reg: 0.0061 (0.0067)  time: 0.7832  data: 0.0039  max mem: 3595
Epoch: [4]  [30/60]  eta: 0:00:23  lr: 0.000500  loss: 0.1397 (0.1650)  loss_classifier: 0.0261 (0.0260)  loss_box_reg: 0.0078 (0.0122)  loss_mask: 0.1033 (0.1185)  loss_objectness: 0.0003 (0.0008)  loss_rpn_box_reg: 0.0060 (0.0075)  time: 0.7800  data: 0.0043  max mem: 3595
Epoch: [4]  [40/60]  eta: 0:00:16  lr: 0.000500  loss: 0.1451 (0.1627)  loss_classifier: 0.0235 (0.0257)  loss_box_reg: 0.0093 (0.0119)  loss_mask: 0.1079 (0.1170)  loss_objectness: 0.0003 (0.0009)  loss_rpn_box_reg: 0.0062 (0.0072)  time: 0.8241  data: 0.0042  max mem: 3595
Epoch: [4]  [50/60]  eta: 0:00:08  lr: 0.000500  loss: 0.1587 (0.1632)  loss_classifier: 0.0239 (0.0259)  loss_box_reg: 0.0093 (0.0118)  loss_mask: 0.1092 (0.1169)  loss_objectness: 0.0003 (0.0008)  loss_rpn_box_reg: 0.0068 (0.0078)  time: 0.8400  data: 0.0041  max mem: 3595
Epoch: [4]  [59/60]  eta: 0:00:00  lr: 0.000500  loss: 0.1587 (0.1661)  loss_classifier: 0.0276 (0.0262)  loss_box_reg: 0.0079 (0.0126)  loss_mask: 0.1106 (0.1184)  loss_objectness: 0.0003 (0.0010)  loss_rpn_box_reg: 0.0080 (0.0080)  time: 0.8359  data: 0.0044  max mem: 3595
Epoch: [4] Total time: 0:00:48 (0.8121 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:10  model_time: 0.1360 (0.1360)  evaluator_time: 0.0019 (0.0019)  time: 0.2020  data: 0.0633  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1543 (0.1492)  evaluator_time: 0.0020 (0.0031)  time: 0.1577  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1568 s / it)
Averaged stats: model_time: 0.1543 (0.1492)  evaluator_time: 0.0020 (0.0031)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.820
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.939
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.532
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.833
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.374
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.866
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.866
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.750
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.875
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.759
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.918
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.406
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.771
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.346
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.803
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.803
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.700
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.810
Epoch: [5]  [ 0/60]  eta: 0:01:09  lr: 0.000500  loss: 0.1493 (0.1493)  loss_classifier: 0.0173 (0.0173)  loss_box_reg: 0.0064 (0.0064)  loss_mask: 0.1195 (0.1195)  loss_objectness: 0.0003 (0.0003)  loss_rpn_box_reg: 0.0058 (0.0058)  time: 1.1576  data: 0.1904  max mem: 3595
Epoch: [5]  [10/60]  eta: 0:00:39  lr: 0.000500  loss: 0.1460 (0.1500)  loss_classifier: 0.0202 (0.0213)  loss_box_reg: 0.0084 (0.0094)  loss_mask: 0.1132 (0.1126)  loss_objectness: 0.0002 (0.0006)  loss_rpn_box_reg: 0.0055 (0.0061)  time: 0.7865  data: 0.0191  max mem: 3595
Epoch: [5]  [20/60]  eta: 0:00:30  lr: 0.000500  loss: 0.1351 (0.1456)  loss_classifier: 0.0201 (0.0205)  loss_box_reg: 0.0064 (0.0088)  loss_mask: 0.1034 (0.1097)  loss_objectness: 0.0002 (0.0005)  loss_rpn_box_reg: 0.0054 (0.0062)  time: 0.7460  data: 0.0027  max mem: 3595
Epoch: [5]  [30/60]  eta: 0:00:23  lr: 0.000500  loss: 0.1419 (0.1600)  loss_classifier: 0.0244 (0.0244)  loss_box_reg: 0.0083 (0.0117)  loss_mask: 0.1038 (0.1158)  loss_objectness: 0.0003 (0.0007)  loss_rpn_box_reg: 0.0071 (0.0075)  time: 0.7701  data: 0.0037  max mem: 3595
Epoch: [5]  [40/60]  eta: 0:00:15  lr: 0.000500  loss: 0.1620 (0.1620)  loss_classifier: 0.0268 (0.0247)  loss_box_reg: 0.0113 (0.0120)  loss_mask: 0.1163 (0.1168)  loss_objectness: 0.0004 (0.0007)  loss_rpn_box_reg: 0.0085 (0.0078)  time: 0.8153  data: 0.0039  max mem: 3595
Epoch: [5]  [50/60]  eta: 0:00:07  lr: 0.000500  loss: 0.1441 (0.1581)  loss_classifier: 0.0229 (0.0242)  loss_box_reg: 0.0081 (0.0110)  loss_mask: 0.1041 (0.1148)  loss_objectness: 0.0003 (0.0007)  loss_rpn_box_reg: 0.0067 (0.0075)  time: 0.8283  data: 0.0042  max mem: 3595
Epoch: [5]  [59/60]  eta: 0:00:00  lr: 0.000500  loss: 0.1449 (0.1596)  loss_classifier: 0.0217 (0.0249)  loss_box_reg: 0.0070 (0.0111)  loss_mask: 0.1044 (0.1154)  loss_objectness: 0.0002 (0.0007)  loss_rpn_box_reg: 0.0070 (0.0076)  time: 0.8396  data: 0.0043  max mem: 3595
Epoch: [5] Total time: 0:00:48 (0.8076 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:10  model_time: 0.1335 (0.1335)  evaluator_time: 0.0023 (0.0023)  time: 0.2000  data: 0.0635  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1466 (0.1485)  evaluator_time: 0.0020 (0.0031)  time: 0.1563  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1559 s / it)
Averaged stats: model_time: 0.1466 (0.1485)  evaluator_time: 0.0020 (0.0031)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.815
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.940
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.542
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.825
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.376
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.858
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.858
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.775
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.864
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.765
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.932
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.428
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.776
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.350
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.813
Epoch: [6]  [ 0/60]  eta: 0:00:56  lr: 0.000050  loss: 0.1720 (0.1720)  loss_classifier: 0.0306 (0.0306)  loss_box_reg: 0.0119 (0.0119)  loss_mask: 0.1225 (0.1225)  loss_objectness: 0.0001 (0.0001)  loss_rpn_box_reg: 0.0069 (0.0069)  time: 0.9433  data: 0.0828  max mem: 3595
Epoch: [6]  [10/60]  eta: 0:00:41  lr: 0.000050  loss: 0.1458 (0.1465)  loss_classifier: 0.0210 (0.0226)  loss_box_reg: 0.0059 (0.0078)  loss_mask: 0.1034 (0.1104)  loss_objectness: 0.0002 (0.0004)  loss_rpn_box_reg: 0.0059 (0.0053)  time: 0.8372  data: 0.0108  max mem: 3595
Epoch: [6]  [20/60]  eta: 0:00:33  lr: 0.000050  loss: 0.1448 (0.1537)  loss_classifier: 0.0210 (0.0245)  loss_box_reg: 0.0071 (0.0105)  loss_mask: 0.1019 (0.1116)  loss_objectness: 0.0002 (0.0005)  loss_rpn_box_reg: 0.0059 (0.0066)  time: 0.8248  data: 0.0037  max mem: 3595
Epoch: [6]  [30/60]  eta: 0:00:24  lr: 0.000050  loss: 0.1481 (0.1547)  loss_classifier: 0.0230 (0.0261)  loss_box_reg: 0.0088 (0.0102)  loss_mask: 0.1019 (0.1107)  loss_objectness: 0.0003 (0.0009)  loss_rpn_box_reg: 0.0074 (0.0068)  time: 0.8078  data: 0.0037  max mem: 3595
Epoch: [6]  [40/60]  eta: 0:00:16  lr: 0.000050  loss: 0.1484 (0.1617)  loss_classifier: 0.0260 (0.0269)  loss_box_reg: 0.0094 (0.0116)  loss_mask: 0.1055 (0.1148)  loss_objectness: 0.0003 (0.0011)  loss_rpn_box_reg: 0.0071 (0.0072)  time: 0.7847  data: 0.0035  max mem: 3595
Epoch: [6]  [50/60]  eta: 0:00:08  lr: 0.000050  loss: 0.1445 (0.1607)  loss_classifier: 0.0221 (0.0264)  loss_box_reg: 0.0104 (0.0114)  loss_mask: 0.1101 (0.1146)  loss_objectness: 0.0004 (0.0010)  loss_rpn_box_reg: 0.0071 (0.0073)  time: 0.7750  data: 0.0036  max mem: 3595
Epoch: [6]  [59/60]  eta: 0:00:00  lr: 0.000050  loss: 0.1445 (0.1610)  loss_classifier: 0.0230 (0.0261)  loss_box_reg: 0.0077 (0.0114)  loss_mask: 0.1101 (0.1151)  loss_objectness: 0.0004 (0.0011)  loss_rpn_box_reg: 0.0071 (0.0073)  time: 0.7916  data: 0.0036  max mem: 3595
Epoch: [6] Total time: 0:00:48 (0.8018 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:09  model_time: 0.1334 (0.1334)  evaluator_time: 0.0020 (0.0020)  time: 0.1978  data: 0.0616  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1474 (0.1430)  evaluator_time: 0.0020 (0.0029)  time: 0.1501  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1502 s / it)
Averaged stats: model_time: 0.1474 (0.1430)  evaluator_time: 0.0020 (0.0029)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.820
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.940
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.553
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.830
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.862
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.862
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.787
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.868
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.764
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.932
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.418
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.775
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.350
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.806
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.806
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.811
Epoch: [7]  [ 0/60]  eta: 0:00:49  lr: 0.000050  loss: 0.1097 (0.1097)  loss_classifier: 0.0113 (0.0113)  loss_box_reg: 0.0037 (0.0037)  loss_mask: 0.0925 (0.0925)  loss_objectness: 0.0011 (0.0011)  loss_rpn_box_reg: 0.0011 (0.0011)  time: 0.8293  data: 0.1411  max mem: 3595
Epoch: [7]  [10/60]  eta: 0:00:38  lr: 0.000050  loss: 0.1355 (0.1430)  loss_classifier: 0.0191 (0.0210)  loss_box_reg: 0.0049 (0.0072)  loss_mask: 0.1026 (0.1089)  loss_objectness: 0.0003 (0.0004)  loss_rpn_box_reg: 0.0040 (0.0056)  time: 0.7626  data: 0.0151  max mem: 3595
Epoch: [7]  [20/60]  eta: 0:00:32  lr: 0.000050  loss: 0.1482 (0.1526)  loss_classifier: 0.0247 (0.0256)  loss_box_reg: 0.0073 (0.0095)  loss_mask: 0.1060 (0.1100)  loss_objectness: 0.0002 (0.0005)  loss_rpn_box_reg: 0.0062 (0.0070)  time: 0.8048  data: 0.0031  max mem: 3595
Epoch: [7]  [30/60]  eta: 0:00:23  lr: 0.000050  loss: 0.1438 (0.1497)  loss_classifier: 0.0247 (0.0246)  loss_box_reg: 0.0073 (0.0090)  loss_mask: 0.1056 (0.1087)  loss_objectness: 0.0002 (0.0005)  loss_rpn_box_reg: 0.0069 (0.0069)  time: 0.8128  data: 0.0036  max mem: 3595
Epoch: [7]  [40/60]  eta: 0:00:15  lr: 0.000050  loss: 0.1410 (0.1530)  loss_classifier: 0.0207 (0.0243)  loss_box_reg: 0.0074 (0.0099)  loss_mask: 0.1070 (0.1114)  loss_objectness: 0.0003 (0.0006)  loss_rpn_box_reg: 0.0053 (0.0069)  time: 0.7771  data: 0.0036  max mem: 3595
Epoch: [7]  [50/60]  eta: 0:00:07  lr: 0.000050  loss: 0.1581 (0.1577)  loss_classifier: 0.0201 (0.0241)  loss_box_reg: 0.0089 (0.0108)  loss_mask: 0.1107 (0.1150)  loss_objectness: 0.0007 (0.0007)  loss_rpn_box_reg: 0.0072 (0.0072)  time: 0.7750  data: 0.0035  max mem: 3595
Epoch: [7]  [59/60]  eta: 0:00:00  lr: 0.000050  loss: 0.1485 (0.1578)  loss_classifier: 0.0201 (0.0243)  loss_box_reg: 0.0061 (0.0108)  loss_mask: 0.1099 (0.1149)  loss_objectness: 0.0008 (0.0007)  loss_rpn_box_reg: 0.0059 (0.0072)  time: 0.7780  data: 0.0035  max mem: 3595
Epoch: [7] Total time: 0:00:47 (0.7868 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:10  model_time: 0.1344 (0.1344)  evaluator_time: 0.0022 (0.0022)  time: 0.2001  data: 0.0626  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1460 (0.1428)  evaluator_time: 0.0019 (0.0030)  time: 0.1500  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1502 s / it)
Averaged stats: model_time: 0.1460 (0.1428)  evaluator_time: 0.0019 (0.0030)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.820
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.940
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.553
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.830
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.377
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.861
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.861
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.787
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.867
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.765
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.932
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.430
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.776
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.352
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.813
Epoch: [8]  [ 0/60]  eta: 0:00:54  lr: 0.000050  loss: 0.1661 (0.1661)  loss_classifier: 0.0293 (0.0293)  loss_box_reg: 0.0071 (0.0071)  loss_mask: 0.1191 (0.1191)  loss_objectness: 0.0076 (0.0076)  loss_rpn_box_reg: 0.0029 (0.0029)  time: 0.9051  data: 0.1844  max mem: 3595
Epoch: [8]  [10/60]  eta: 0:00:39  lr: 0.000050  loss: 0.1512 (0.1534)  loss_classifier: 0.0226 (0.0231)  loss_box_reg: 0.0071 (0.0108)  loss_mask: 0.1086 (0.1121)  loss_objectness: 0.0002 (0.0011)  loss_rpn_box_reg: 0.0044 (0.0063)  time: 0.7955  data: 0.0189  max mem: 3595
Epoch: [8]  [20/60]  eta: 0:00:31  lr: 0.000050  loss: 0.1517 (0.1618)  loss_classifier: 0.0225 (0.0246)  loss_box_reg: 0.0097 (0.0118)  loss_mask: 0.1076 (0.1172)  loss_objectness: 0.0002 (0.0009)  loss_rpn_box_reg: 0.0068 (0.0073)  time: 0.7798  data: 0.0029  max mem: 3595
Epoch: [8]  [30/60]  eta: 0:00:23  lr: 0.000050  loss: 0.1379 (0.1574)  loss_classifier: 0.0225 (0.0241)  loss_box_reg: 0.0091 (0.0121)  loss_mask: 0.1016 (0.1134)  loss_objectness: 0.0002 (0.0006)  loss_rpn_box_reg: 0.0074 (0.0072)  time: 0.7700  data: 0.0036  max mem: 3595
Epoch: [8]  [40/60]  eta: 0:00:15  lr: 0.000050  loss: 0.1505 (0.1647)  loss_classifier: 0.0240 (0.0261)  loss_box_reg: 0.0099 (0.0125)  loss_mask: 0.1127 (0.1177)  loss_objectness: 0.0003 (0.0008)  loss_rpn_box_reg: 0.0073 (0.0076)  time: 0.7909  data: 0.0037  max mem: 3595
Epoch: [8]  [50/60]  eta: 0:00:07  lr: 0.000050  loss: 0.1566 (0.1640)  loss_classifier: 0.0252 (0.0266)  loss_box_reg: 0.0097 (0.0122)  loss_mask: 0.1176 (0.1162)  loss_objectness: 0.0004 (0.0009)  loss_rpn_box_reg: 0.0076 (0.0081)  time: 0.8186  data: 0.0037  max mem: 3595
Epoch: [8]  [59/60]  eta: 0:00:00  lr: 0.000050  loss: 0.1460 (0.1603)  loss_classifier: 0.0229 (0.0254)  loss_box_reg: 0.0062 (0.0113)  loss_mask: 0.1032 (0.1153)  loss_objectness: 0.0003 (0.0009)  loss_rpn_box_reg: 0.0053 (0.0074)  time: 0.7792  data: 0.0036  max mem: 3595
Epoch: [8] Total time: 0:00:47 (0.7848 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:09  model_time: 0.1338 (0.1338)  evaluator_time: 0.0022 (0.0022)  time: 0.1986  data: 0.0617  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1465 (0.1430)  evaluator_time: 0.0020 (0.0029)  time: 0.1504  data: 0.0020  max mem: 3595
Test: Total time: 0:00:07 (0.1502 s / it)
Averaged stats: model_time: 0.1465 (0.1430)  evaluator_time: 0.0020 (0.0029)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.820
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.939
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.553
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.830
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.378
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.863
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.863
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.787
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.868
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.765
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.932
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.430
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.775
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.350
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.808
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.813
Epoch: [9]  [ 0/60]  eta: 0:00:48  lr: 0.000005  loss: 0.1442 (0.1442)  loss_classifier: 0.0140 (0.0140)  loss_box_reg: 0.0034 (0.0034)  loss_mask: 0.1234 (0.1234)  loss_objectness: 0.0002 (0.0002)  loss_rpn_box_reg: 0.0032 (0.0032)  time: 0.8146  data: 0.0761  max mem: 3595
Epoch: [9]  [10/60]  eta: 0:00:39  lr: 0.000005  loss: 0.1442 (0.1671)  loss_classifier: 0.0200 (0.0212)  loss_box_reg: 0.0095 (0.0119)  loss_mask: 0.1228 (0.1254)  loss_objectness: 0.0003 (0.0022)  loss_rpn_box_reg: 0.0055 (0.0064)  time: 0.7829  data: 0.0101  max mem: 3595
Epoch: [9]  [20/60]  eta: 0:00:31  lr: 0.000005  loss: 0.1593 (0.1659)  loss_classifier: 0.0248 (0.0246)  loss_box_reg: 0.0095 (0.0121)  loss_mask: 0.1177 (0.1209)  loss_objectness: 0.0003 (0.0016)  loss_rpn_box_reg: 0.0055 (0.0066)  time: 0.7862  data: 0.0036  max mem: 3595
Epoch: [9]  [30/60]  eta: 0:00:23  lr: 0.000005  loss: 0.1593 (0.1684)  loss_classifier: 0.0265 (0.0264)  loss_box_reg: 0.0088 (0.0128)  loss_mask: 0.1139 (0.1202)  loss_objectness: 0.0004 (0.0016)  loss_rpn_box_reg: 0.0063 (0.0074)  time: 0.7912  data: 0.0036  max mem: 3595
Epoch: [9]  [40/60]  eta: 0:00:15  lr: 0.000005  loss: 0.1467 (0.1608)  loss_classifier: 0.0233 (0.0248)  loss_box_reg: 0.0077 (0.0115)  loss_mask: 0.1032 (0.1163)  loss_objectness: 0.0004 (0.0013)  loss_rpn_box_reg: 0.0064 (0.0070)  time: 0.7813  data: 0.0036  max mem: 3595
Epoch: [9]  [50/60]  eta: 0:00:07  lr: 0.000005  loss: 0.1487 (0.1593)  loss_classifier: 0.0215 (0.0247)  loss_box_reg: 0.0080 (0.0111)  loss_mask: 0.1077 (0.1152)  loss_objectness: 0.0002 (0.0011)  loss_rpn_box_reg: 0.0060 (0.0072)  time: 0.8089  data: 0.0036  max mem: 3595
Epoch: [9]  [59/60]  eta: 0:00:00  lr: 0.000005  loss: 0.1528 (0.1603)  loss_classifier: 0.0215 (0.0251)  loss_box_reg: 0.0077 (0.0108)  loss_mask: 0.1093 (0.1161)  loss_objectness: 0.0002 (0.0010)  loss_rpn_box_reg: 0.0060 (0.0072)  time: 0.8113  data: 0.0036  max mem: 3595
Epoch: [9] Total time: 0:00:47 (0.7922 s / it)
creating index...
index created!
Test:  [ 0/50]  eta: 0:00:09  model_time: 0.1336 (0.1336)  evaluator_time: 0.0021 (0.0021)  time: 0.1983  data: 0.0618  max mem: 3595
Test:  [49/50]  eta: 0:00:00  model_time: 0.1473 (0.1434)  evaluator_time: 0.0020 (0.0029)  time: 0.1519  data: 0.0019  max mem: 3595
Test: Total time: 0:00:07 (0.1505 s / it)
Averaged stats: model_time: 0.1473 (0.1434)  evaluator_time: 0.0020 (0.0029)
Accumulating evaluation results...
DONE (t=0.01s).
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.821
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.939
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.553
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.831
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.379
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.864
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.864
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.787
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.869
IoU metric: segm
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.763
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.990
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.932
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.430
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.773
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.350
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.807
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.807
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.738
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.812
# pick one image from the test set
img, _ = dataset_test[0]
# put the model in evaluation mode
model.eval()
with torch.no_grad():
    prediction = model([img.to(device)])
prediction
[{'boxes': tensor([[ 59.3467,  44.0603, 195.7051, 326.9784],
          [276.5097,  22.4848, 290.8961,  73.5858],
          [ 80.4872,  38.2383, 190.3802, 218.9982]], device='cuda:0'),
  'labels': tensor([1, 1, 1], device='cuda:0'),
  'scores': tensor([0.9994, 0.8514, 0.1090], device='cuda:0'),
  'masks': tensor([[[[0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            ...,
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.]]],
  
  
          [[[0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            ...,
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.]]],
  
  
          [[[0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            ...,
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.],
            [0., 0., 0.,  ..., 0., 0., 0.]]]], device='cuda:0')}]
Image.fromarray(img.mul(255).permute(1, 2, 0).byte().numpy())

基于pytorch的目标检测(rcnn+resnet50,行人数据集)_第3张图片

Image.fromarray(prediction[0]['masks'][0, 0].mul(255).byte().cpu().numpy())

基于pytorch的目标检测(rcnn+resnet50,行人数据集)_第4张图片


你可能感兴趣的:(pytorch)