方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。HOG特征通过计算和统计图像局部区域的梯度方向直方图来构成特征。
HOG特征的总结:把样本图像分割为若干个像素的单元,把梯度方向平均划分为多个区间,在每个单元里面对所有像素的梯度方向在各个方向区间进行直方图统计,得到一个多维的特征向量,每相邻的单元构成一个区间,把一个区间内的特征向量联起来得到多维的特征向量,用区间对样本图像进行扫描,扫描步长为一个单元。最后将所有块的特征串联起来,就得到了人体的特征。至今虽然有很多行人检测算法,但基本都是以HOG+SVM的思路为主。
卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络,是深度学习的代表算法之一。卷积神经网络具有表征学习能力,能够按其阶层结构对输入信息进行平移不变分类,因此也被称为“平移不变人工神经网络(Shift-Invariant Artificial Neural Networks, SIANN)”。
卷积神经网络中,第一步一般用卷积核去提取特征,这些初始化的卷积核会在反向传播的过程中,在迭代中被一次又一次的更新,无限地逼近我们的真实解。其实本质没有对图像矩阵求解,而是初始化了一个符合某种分布的特征向量集,然后在反向传播中无限更新这个特征集,让它能无限逼近数学中的那个概念上的特征向量,以致于我们能用特征向量的数学方法对矩阵进行特征提取。
*下载tensorflow,dlib,Keras均是在Anaconda Prompt窗口下的TensorFlow环境中进行的。
*后续写代码时jupyter都要切换至tensorflow服务器(下面有写到)
或者
在Anaconda Prompt窗口下输入命令:
conda create -n tensorflow python=3.6
activate tensorflow
pip install tensorflow -i https://pypi.douban.com/simple
conda activate tensorflow
pip install ipykernel -i https://pypi.douban.com/simple
python -m ipykernel install --user --name tensorflow --display-name "Python (tensorflow)"
tensorflow的安装(在Anaconda中创建虚拟python3.6环境)参考了以下几个博客:
https://www.cnblogs.com/maxiaodoubao/p/9854595.html
https://www.cnblogs.com/phoenixash/p/12132197.html
win10中anaconda安装tensorflow时报错Traceback (most recent call last): File "E:\Anaconda3\lib\site-packag
这个问题可能是源的问题,我换了豆瓣镜像源下载就没有出错了,参考下面的博客:
https://blog.csdn.net/qq_43211132/article/details/94426458
下载的dlib.whl文件如下:
dlib-19.7.0-cp36-cp36m-win_amd64.whl
pip install D:\dlib-19.7.0-cp36-cp36m-win_amd64.whl
pip install keras
import keras
keras.__version__
# The path to the directory where the original
# dataset was uncompressed
riginal_dataset_dir = 'D:\genki4k'
# The directory where we will
# store our smaller dataset
base_dir = 'genki4k'
os.mkdir(base_dir)
# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
# Directory with our training smile pictures
train_smile_dir = os.path.join(train_dir, 'smile')
os.mkdir(train_smile_dir)
# Directory with our training unsmile pictures
train_unsmile_dir = os.path.join(train_dir, 'unsmile')
#s.mkdir(train_dogs_dir)
# Directory with our validation smile pictures
validation_smile_dir = os.path.join(validation_dir, 'smile')
os.mkdir(validation_smile_dir)
# Directory with our validation unsmile pictures
validation_unsmile_dir = os.path.join(validation_dir, 'unsmile')
os.mkdir(validation_unsmile_dir)
# Directory with our validation smile pictures
test_smile_dir = os.path.join(test_dir, 'smile')
os.mkdir(test_smile_dir)
# Directory with our validation unsmile pictures
test_unsmile_dir = os.path.join(test_dir, 'unsmile')
os.mkdir(test_unsmile_dir)
train_smile_dir="genki4k/train/smile/"
train_umsmile_dir="genki4k/train/unsmile/"
test_smile_dir="genki4k/test/smile/"
test_umsmile_dir="genki4k/test/unsmile/"
validation_smile_dir="genki4k/validation/smile/"
validation_unsmile_dir="genki4k/validation/unsmile/"
train_dir="genki4k/train/"
test_dir="genki4k/test/"
validation_dir="genki4k/validation/"
print('total training smile images:', len(os.listdir(train_smile_dir)))
print('total training unsmile images:', len(os.listdir(train_umsmile_dir)))
print('total testing smile images:', len(os.listdir(test_smile_dir)))
print('total testing unsmile images:', len(os.listdir(test_umsmile_dir)))
print('total validation smile images:', len(os.listdir(validation_smile_dir)))
print('total validation unsmile images:', len(os.listdir(validation_unsmile_dir)))
#创建模型
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen=ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# 目标文件目录
train_dir,
#所有图片的size必须是150x150
target_size=(150, 150),
batch_size=20,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch.shape)
break
报错,原因是没有安装pillow,因为使用load_img()函数需要pillow,
安装pillow库:
重新运行 :
train_generator.class_indices
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=10,
validation_data=validation_generator,
validation_steps=50)
#保存模型
model.save('genki4k/smileORunsmile_1.h5')
import matplotlib.pyplot as plt
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(len(acc))
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'b', label='Validation acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'b', label='Validation loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
import matplotlib.pyplot as plt
# This is module with image preprocessing utilities
from keras.preprocessing import image
fnames = [os.path.join(train_smile_dir, fname) for fname in os.listdir(train_smile_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
#归一化处理
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# This is the target directory
train_dir,
# All images will be resized to 150x150
target_size=(150, 150),
batch_size=32,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=60,
validation_data=validation_generator,
validation_steps=50)
model.save('genki4k/smileORunsmile_2.h5')
# 单张图片进行判断 是笑脸还是非笑脸
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
#加载模型
model = load_model('genki4k/smileORunsmile_2.h5')
#本地图片路径
img_path='genki4k/test/smile/file0901.jpg'
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img)/255.0
img_tensor = np.expand_dims(img_tensor, axis=0)
prediction =model.predict(img_tensor)
print(prediction)
if prediction[0][0]>0.5:
result='非笑脸'
else:
result='笑脸'
print(result)
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from PIL import Image
model = load_model('genki4k/smileORunsmile_2.h5')
detector = dlib.get_frontal_face_detector()
video=cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
def rec(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dets=detector(gray,1)
if dets is not None:
for face in dets:
left=face.left()
top=face.top()
right=face.right()
bottom=face.bottom()
cv2.rectangle(img,(left,top),(right,bottom),(0,255,0),2)
img1=cv2.resize(img[top:bottom,left:right],dsize=(150,150))
img1=cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)
img1 = np.array(img1)/255.
img_tensor = img1.reshape(-1,150,150,3)
prediction =model.predict(img_tensor)
print(prediction)
if prediction[0][0]>0.5:
result='unsmile'
else:
result='smile'
cv2.putText(img, result, (left,top), font, 2, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('Video', img)
while video.isOpened():
res, img_rd = video.read()
if not res:
break
rec(img_rd)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
import keras
Import os,shutil
# The path to the directory where the original
# dataset was uncompressed
riginal_dataset_dir = 'D:\mask'
# The directory where we will
# store our smaller dataset
base_dir = 'mask'
os.mkdir(base_dir)
# Directories for our training,
# validation and test splits
train_dir = os.path.join(base_dir, 'train')
os.mkdir(train_dir)
validation_dir = os.path.join(base_dir, 'validation')
os.mkdir(validation_dir)
test_dir = os.path.join(base_dir, 'test')
os.mkdir(test_dir)
# Directory with our training smile pictures
train_mask_dir = os.path.join(train_dir, 'mask')
os.mkdir(train_mask_dir)
# Directory with our training unsmile pictures
train_unmask_dir = os.path.join(train_dir, 'unmask')
os.mkdir(train_unmask_dir)
#s.mkdir(train_dogs_dir)
# Directory with our validation smile pictures
validation_mask_dir = os.path.join(validation_dir, 'mask')
os.mkdir(validation_mask_dir)
# Directory with our validation unsmile pictures
validation_unmask_dir = os.path.join(validation_dir, 'unmask')
os.mkdir(validation_unmask_dir)
# Directory with our validation smile pictures
test_mask_dir = os.path.join(test_dir, 'mask')
os.mkdir(test_mask_dir)
# Directory with our validation unsmile pictures
test_unmask_dir = os.path.join(test_dir, 'unmask')
os.mkdir(test_unmask_dir)
train_mask_dir="mask/train/mask/"
train_unmask_dir="mask/train/unmask/"
test_mask_dir="mask/test/mask/"
test_unmask_dir="mask/test/unmask/"
validation_mask_dir="mask/validation/mask/"
validation_unmask_dir="mask/validation/unmask/"
train_dir="mask/train/"
test_dir="mask/test/"
validation_dir="mask/validation/"
print('total training mask images:', len(os.listdir(train_mask_dir)))
print('total training unmask images:', len(os.listdir(train_unmask_dir)))
print('total testing mask images:', len(os.listdir(test_mask_dir)))
print('total testing unmask images:', len(os.listdir(test_unmask_dir)))
print('total validation mask images:', len(os.listdir(validation_mask_dir)))
print('total validation unmask images:', len(os.listdir(validation_unmask_dir)))
#创建模型
from keras import layers
from keras import models
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
from keras import optimizers
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
from keras.preprocessing.image import ImageDataGenerator
# All images will be rescaled by 1./255
train_datagen = ImageDataGenerator(rescale=1./255)
validation_datagen=ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# 目标文件目录
train_dir,
#所有图片的size必须是150x150
target_size=(150, 150),
batch_size=20,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
test_generator = test_datagen.flow_from_directory(test_dir,
target_size=(150, 150),
batch_size=20,
class_mode='binary')
for data_batch, labels_batch in train_generator:
print('data batch shape:', data_batch.shape)
print('labels batch shape:', labels_batch.shape)
break
train_generator.class_indices
训练模型:
#花费时间长
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=10,
validation_data=validation_generator,
validation_steps=50)
#保存模型
model.save('mask/maskORunmask_1.h5')
datagen = ImageDataGenerator(
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,
fill_mode='nearest')
import matplotlib.pyplot as plt
from keras.preprocessing import image
fnames = [os.path.join(train_mask_dir, fname) for fname in os.listdir(train_mask_dir)]
img_path = fnames[3]
img = image.load_img(img_path, target_size=(150, 150))
x = image.img_to_array(img)
x = x.reshape((1,) + x.shape)
i = 0
for batch in datagen.flow(x, batch_size=1):
plt.figure(i)
imgplot = plt.imshow(image.array_to_img(batch[0]))
i += 1
if i % 4 == 0:
break
plt.show()
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu',
input_shape=(150, 150, 3)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(128, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Flatten())
model.add(layers.Dropout(0.5))
model.add(layers.Dense(512, activation='relu'))
model.add(layers.Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer=optimizers.RMSprop(lr=1e-4),
metrics=['acc'])
#归一化处理
train_datagen = ImageDataGenerator(
rescale=1./255,
rotation_range=40,
width_shift_range=0.2,
height_shift_range=0.2,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True,)
# Note that the validation data should not be augmented!
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
# This is the target directory
train_dir,
# All images will be resized to 150x150
target_size=(150, 150),
batch_size=32,
# Since we use binary_crossentropy loss, we need binary labels
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_dir,
target_size=(150, 150),
batch_size=32,
class_mode='binary')
history = model.fit_generator(
train_generator,
steps_per_epoch=100,
epochs=60,
validation_data=validation_generator,
validation_steps=50)
model.save('mask/maskORunmask_2.h5')
# 单张图片进行判断 是否戴口罩
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
model = load_model('mask/maskORunmask_2.h5')
img_path='mask/test/unmask/file0791.jpg'
img = image.load_img(img_path, target_size=(150, 150))
#print(img.size)
img_tensor = image.img_to_array(img)/255.0
img_tensor = np.expand_dims(img_tensor, axis=0)
prediction =model.predict(img_tensor)
print(prediction)
if prediction[0][0]>0.5:
result='未戴口罩'
else:
result='戴口罩'
print(result)
import cv2
from keras.preprocessing import image
from keras.models import load_model
import numpy as np
import dlib
from PIL import Image
model = load_model('genki4k/smileORunsmile_2.h5')
detector = dlib.get_frontal_face_detector()
video=cv2.VideoCapture(0)
font = cv2.FONT_HERSHEY_SIMPLEX
def rec(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
dets=detector(gray,1)
if dets is not None:
for face in dets:
left=face.left()
top=face.top()
right=face.right()
bottom=face.bottom()
cv2.rectangle(img,(left,top),(right,bottom),(0,255,0),2)
img1=cv2.resize(img[top:bottom,left:right],dsize=(150,150))
img1=cv2.cvtColor(img1,cv2.COLOR_BGR2RGB)
img1 = np.array(img1)/255.
img_tensor = img1.reshape(-1,150,150,3)
prediction =model.predict(img_tensor)
print(prediction)
if prediction[0][0]>0.5:
result='unsmile'
else:
result='smile'
cv2.putText(img, result, (left,top), font, 2, (0, 255, 0), 2, cv2.LINE_AA)
cv2.imshow('Video', img)
while video.isOpened():
res, img_rd = video.read()
if not res:
break
rec(img_rd)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
video.release()
cv2.destroyAllWindows()
不知道是我电脑性能的原因还是其他配置的原因,我的训练模型一直没有完整的跑出来过,总是中途的时候就自己停掉了,幸好不影响后面的摄像头采集人脸识别,可能精确度会低一些吧,也没有找到解决办法。