最近在使用Flink Table API,将 DataStream/DataSet 与 Table 的相互转换方法进行总结。
org.apache.flink
flink-streaming-scala_${scala.binary.version}
${flink.version}
log4j
*
org.slf4j
slf4j-log4j12
org.apache.flink
flink-table-planner_${scala.binary.version}
${flink.version}
org.apache.flink
flink-table-api-scala-bridge_${scala.binary.version}
${flink.version}
org.apache.flink
flink-table-common
${flink.version}
Table API使用Scala的隐式转换,为了使用Scala的隐式转换,请确保导入
org.apache.flink.api.scala._
org.apache.flink.table.api.scala._
org.apache.flink.streaming.api.scala._
定义数据类型
// data type
case class Order(user: Long, product: String, amount: Int)
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = StreamTableEnvironment.create(env)
// DataStream
val orderA: DataStream[Order] = env.fromCollection(Seq(
Order(2L, "pen", 3),
Order(1L, "rubber", 3),
Order(4L, "beer", 1)
))
// register DataStream as Table
tEnv.registerDataStream("OrderA", orderA, 'user, 'product, 'amount)
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
// DataSet
val orderB: DataSet[Order] = env.fromElements(
Order(2L, "pen", 3),
Order(1L, "rubber", 3),
Order(4L, "beer", 1)
)
// register the DataSet as table
tEnv.registerDataSet("OrderB", orderB, 'user, 'product, 'amount)
val env = StreamExecutionEnvironment.getExecutionEnvironment
val tEnv = StreamTableEnvironment.create(env)
// DataStream
val orderA: DataStream[Order] = env.fromCollection(Seq(
Order(2L, "pen", 3),
Order(1L, "rubber", 3),
Order(4L, "beer", 1)
))
// convert DataStream to Table
val tableA: Table = tEnv.fromDataStream(orderA, 'user, 'product, 'amount)
// 或者
orderA.toTable(tEnv)
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
// DataSet
val orderB: DataSet[Order] = env.fromElements(
Order(2L, "pen", 3),
Order(1L, "rubber", 3),
Order(4L, "beer", 1)
)
// convert DataSets to Table
val tableB: Table = orderB.toTable(tEnv, 'user, 'product, 'amount)
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
// DataSet
val orderB: DataSet[Order] = env.fromElements(
Order(2L, "pen", 3),
Order(1L, "rubber", 3),
Order(4L, "beer", 1)
)
// convert DataSets to Table
val tableB: Table = orderB.toTable(tEnv, 'user, 'product, 'amount)
// convert a Table into a DataStream
val ds1: DataStream[Order] = tableA.toAppendStream[Order]
// 或者
val ds2: DataStream[Order] = tEnv.toAppendStream[Order](tableA)
val env = ExecutionEnvironment.getExecutionEnvironment
val tEnv = BatchTableEnvironment.create(env)
// DataSet
val orderB: DataSet[Order] = env.fromElements(
Order(2L, "pen", 3),
Order(1L, "rubber", 3),
Order(4L, "beer", 1)
)
// convert DataSets to Table
val tableB: Table = orderB.toTable(tEnv, 'user, 'product, 'amount)
// convert a Table into a DataSet
val ds1: DataSet[Order] = tableB.toDataSet[Order]
// 或者
val ds2: DataSet[Order] = tEnv.toDataSet[Order](tableB)
如果有写的不对的地方,欢迎大家指正。有什么疑问,欢迎加QQ群:176098255