Go调度器中的三种结构G、P、M
系统线程固定2M,且维护一堆上下文,对需求多变的并发应用并不友好,有可能造成内存浪费或内存不够用。Go将并发的单位下降到线程以下,由其设计的goroutine初始空间非常小,仅2kb,但支持动态扩容到最大1G,这就是go自己的并发单元——goroutine协程。
实际上系统最小的执行单元仍然是线程,go运行时执行的协程也是挂载到某一系统线程之上的,这种协程与系统线程的调度分配由Go的并发调度器承担,Go的并发调度器是属于混合的二级调度并发模型,其内部设计有G、P、M三种抽象结构,我们来看一下它们分别是什么:
G-P-M模型抽象结构:
关于P这个设计,是在Go1.0之后才实现的,起初的Go并发性能并不十分亮眼,协程和系统线程的调度比较粗暴,导致很多性能问题,如全局资源锁、M的内存过高等造成许多性能损耗,加入P的设计后实现了一个叫做 work-stealing 的调度算法:由P来维护Goroutine队列并选择一个适当的M绑定
G-P-M模型调度
我们来看看go关键字创建一个协程后其调度器是怎么工作的:
当然也有一些情况会造成Goroutine阻塞,如:
当遇到上述阻塞时,Go调度器也有相应的处理方式:
如系统GC,M会解绑P,出让控制权给其他M,让该P维护的G运行队列不至于阻塞。
当goroutine因为管道操作或者系统IO、网络IO而阻塞时,对应的G会被放置到某个等待队列,该G的状态由运行时变为等待状态,而M会跳过该G尝试获取并执行下一个G,如果此时没有可运行的G供M运行,那么M将解绑P,并进入休眠状态;当阻塞的G被另一端的G2唤醒时,如管道通知,G又被标记为可运行状态,尝试加入G2所在P局部队列的队头,然后再是G全局队列。
当P维护的局部队列全部运行完毕,它会尝试在全局队列获取G,直到全局队列为空,再向其他局部队列窃取一般的G。
至此Go的调度器模型解析完毕。基于Go调度器的优越设计,它号称能实现百万级并发,即使日常很难达到这种并发量,我们也应该对并发的使用要心存敬畏,真正的并发依赖于物理核心,启动并发是需要系统开销的,虽然在Go的运行时它看起来很小,但量变引起质变,当业务启动的并发到十万级、百万级甚至千万级时,其性能开销还是非常巨大的。可以通过一定的手段控制并发数量以防止系统奔溃,如实现一个协程池,通过worker机制控制并发数。
Ok,希望学完这一专题你会对Go的并发有更深刻的了解。
参考链接:https://www.jianshu.com/p/5df0a7e118d8