批量从文件夹中读取图片和训练
from PIL import Image
import matplotlib.pyplot as plt
import numpy as np
import os
import tensorflow as tf
from tensorflow.keras import datasets, layers, models
先导入第一张
X_train = Image.open('C:/Users/31035/Desktop/Desktop/data/livergate/livergate_0.png')
X_train = X_train.resize((512,512),Image.ANTIALIAS)
X_train = np.array(X_train)
X_train = np.expand_dims(X_train, axis=0)
print(X_train.shape)

用concatenate的方式导入指定数量的图片
for dirname, _, filenames in os.walk('C:/Users/31035/Desktop/Desktop/data/livergate'):
for filename in filenames:
if X_train.shape[0] > 357:
break
try:
im = Image.open(os.path.join(dirname, filename))
im = im.resize((512,512),Image.ANTIALIAS)
image_array = np.array(im)
image_array = np.expand_dims(image_array, axis=0)
X_train = np.concatenate((X_train, image_array), axis=0)
except:
pass
print(str(X_train.shape[0]))

同理导入另一个文件夹图片
X_train_n = Image.open('C:/Users/31035/Desktop/Desktop/data/nolivergate/other_0.png')
X_train_n = X_train_n.resize((512,512),Image.ANTIALIAS)
X_train_n = np.array(X_train_n)
X_train_n = np.expand_dims(X_train_n, axis=0)
print(X_train_n.shape)
for dirname, _, filenames in os.walk('C:/Users/31035/Desktop/Desktop/data/nolivergate'):
for filename in filenames:
if X_train_n.shape[0] > 820:
break
try:
im = Image.open(os.path.join(dirname, filename))
im = im.resize((512,512),Image.ANTIALIAS)
image_array = np.array(im)
image_array = np.expand_dims(image_array, axis=0)
X_train_n = np.concatenate((X_train_n, image_array), axis=0)
except:
pass
print(str(X_train_n.shape[0]))

设置样本标签
Y_train = np.ones((358))
Y_train = Y_train.astype(int)
Y_train_n = np.zeros((821))
Y_train_n = Y_train_n.astype(int)
X = np.concatenate((X_train,X_train_n),axis=0)
打乱
np.random.seed(200)
np.random.shuffle(X)
np.random.seed(200)
np.random.shuffle(Y)
随机展示图片
class_names = ['nolivergate','livergate']
plt.figure(figsize=(10,10))
for i in range(25):
plt.subplot(5,5,i+1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(X[i])
plt.xlabel(class_names[Y[i]])
plt.show()
建立模型
model = models.Sequential()
model.add(layers.Conv2D(32, (3, 3), activation='relu', input_shape=(512,512,1)))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.MaxPooling2D((2, 2)))
model.add(layers.Conv2D(64, (3, 3), activation='relu'))
model.add(layers.Flatten())
model.add(layers.Dense(64, activation='relu'))
model.add(layers.Dense(2, activation='softmax'))
model.summary()

编译&训练
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
history = model.fit(X_train, Y_train, epochs=10,
validation_data=(X_val, Y_val))