AVL树是一种二叉查找树的改进算法,它避免了普通二叉树可能出现的长链现象,其根本的算法思想是每当对树进行插入和删除操作时,通过有限的指针变换,改变原有的树的结构,使得每个节点的左子树和右子树相对平衡。
虽然现实中AVL树算法被许多更优秀的算法所替代,但是这一套算法非常适合初学者进行练习,详细的AVL树的教程和博客不难找到。通常,AVL树是通过递归方式来实现的,这种方法思路清晰,代码量小,并且AVL算法有限控制了二叉树的高度,使得递归对运行效率的影响可以忽略不计。对应的,也有非递归的方法,程序运行起来可以快那么一丢丢,但是代码量大,编写难度高,实际应用中不建议使用非递归来实现。
从学习的角度来说,练习编写非递归算法可以让你深入理解递归和栈的联系,可以让你在以后的编程工作中编写出更高效的代码。这里给出一个非递归的Java代码(包括插入和删除都是非递归的写法),有兴趣的可以参考一下:
import java.util.ArrayDeque;
public class AVLTree<E extends Comparable<? super E>> {
private static class BinaryNode<E> {
BinaryNode( E e ) { this( e, null, null ); }
BinaryNode( E e, BinaryNode<E> lt, BinaryNode<E> rt ) {
element = e; left = lt; right = rt; height = 0;
}
E element;
BinaryNode<E> left, right;
int height;
}
private BinaryNode<E> root = null;
public AVLTree() { root = null; }
public void makeEmpty() { root = null; }
public boolean isEmpty() { return root == null; }
public boolean contains( E e ) {
BinaryNode<E> seek = root;
while( seek != null ) {
int cmp = e.compareTo( seek.element );
if( cmp < 0 ) seek = seek.left;
else if( cmp > 0 ) seek = seek.right;
else return true;
}
return false;
}
public E findMin() {
if( isEmpty() ) return null;
BinaryNode<E> seek = root;
while( seek.left != null ) seek = seek.left;
return seek.element;
}
public E findMax() {
if( isEmpty() ) return null;
BinaryNode<E> seek = root;
while( seek.right != null ) seek = seek.right;
return seek.element;
}
public void insert( E e ) {
if( isEmpty() ) {
root = new BinaryNode<E>( e, null, null );
return;
}
BinaryNode<E> seek = root;
ArrayDeque<BinaryNode<E>> stack = new ArrayDeque<>();
while( true ) {
int cmp = e.compareTo( seek.element );
if( cmp < 0 ) {
stack.push( seek );
if( seek.left == null ) {
seek.left = new BinaryNode<E>( e, null, null );
break;
}
seek = seek.left;
}
else if( cmp > 0 ) {
stack.push( seek );
if( seek.right == null ) {
seek.right = new BinaryNode<E>( e, null, null );
break;
}
seek = seek.right;
}
else return;
}
balance( stack );
}
private int height( BinaryNode<E> node ) {
return node == null ? -1 : node.height;
}
private void balance( ArrayDeque<BinaryNode<E>> stack ) {
BinaryNode<E> seek;
while( !stack.isEmpty() ) {
seek = stack.pop();
int h = seek.height;
int h1 = height( seek.left );
int h2 = height( seek.right );
if( h1 - h2 == 2 ) {
BinaryNode<E> lt = seek.left;
if( height( lt.left ) >= height( lt.right ) ) {
seek.left = lt.right;
lt.right = seek;
seek.height = Math.max( height(seek.left), height(seek.right) ) + 1;
lt.height = Math.max( height(lt.left), height(lt.right) ) + 1;
if( stack.isEmpty() ) root = lt;
else {
BinaryNode<E> f = stack.peek();
if( f.left == seek ) f.left = lt;
else f.right = lt;
}
if( lt.height == h ) return;
}
else {
BinaryNode<E> rt = lt.right;
seek.left = rt.right;
lt.right = rt.left;
rt.left = lt;
rt.right = seek;
seek.height = Math.max( height(seek.left), height(seek.right) ) + 1;
rt.height = Math.max( height(rt.left), height(rt.right) ) + 1;
lt.height = Math.max( height(lt.left), height(lt.right) ) + 1;
if( stack.isEmpty() ) root = rt;
else {
BinaryNode<E> f = stack.peek();
if( f.left == seek ) f.left = rt;
else f.right = rt;
}
if( rt.height == h ) return;
}
}
if( h2 - h1 == 2 ) {
BinaryNode<E> rt = seek.right;
if( height( rt.right ) >= height( rt.left ) ) {
seek.right = rt.left;
rt.left = seek;
seek.height = Math.max( height(seek.left), height(seek.right) ) + 1;
rt.height = Math.max( height(rt.left), height(rt.right) ) + 1;
if( stack.isEmpty() ) root = rt;
else {
BinaryNode<E> f = stack.peek();
if( f.left == seek ) f.left = rt;
else f.right = rt;
}
if( rt.height == h ) return;
}
else {
BinaryNode<E> lt = rt.left;
seek.right = lt.left;
rt.left = lt.right;
lt.left = seek;
lt.right = rt;
seek.height = Math.max( height(seek.left), height(seek.right) ) + 1;
lt.height = Math.max( height(lt.left), height(lt.right) ) + 1;
rt.height = Math.max( height(rt.left), height(rt.right) ) + 1;
if( stack.isEmpty() ) root = lt;
else {
BinaryNode<E> f = stack.peek();
if( f.left == seek ) f.left = lt;
else f.right = lt;
}
if( lt.height == h ) return;
}
}
else if( Math.max( h1, h2 ) + 1 == h ) return;
else seek.height = Math.max( h1, h2 ) + 1;
}
}
public void remove( E e ) {
BinaryNode<E> seek = root;
ArrayDeque<BinaryNode<E>> stack = new ArrayDeque<>();
while( seek != null ) {
int cmp = e.compareTo( seek.element );
if( cmp < 0 ) {
stack.push( seek );
seek = seek.left;
}
else if( cmp > 0 ) {
stack.push( seek );
seek = seek.right;
}
else break;
}
if( seek == null ) return;
if( seek.left == null ) {
if( stack.isEmpty() ) root = seek.right;
else {
BinaryNode<E> f = stack.peek();
if( e.compareTo( f.element ) < 0 ) f.left = seek.right;
else f.right = seek.right;
balance( stack );
}
}
else {
stack.push( seek );
BinaryNode<E> max = seek.left;
while( max.right != null ) {
stack.push( max );
max = max.right;
}
if( stack.peek() == seek ) seek.left = max.left;
else stack.peek().right = max.left;
seek.element = max.element;
balance( stack );
}
}
public void printTree() {
if( isEmpty() ) System.out.println( "Empty Tree!!!" );
else printTree( root, "" );
}
private void printTree( BinaryNode<E> node, String str ) {
if( node != null ) {
printTree( node.left, str+'\t' );
System.out.println( str + node.element + "(" + node.height + ")" );
printTree( node.right, str+'\t' );
}
}
public void removeMin() {
if( isEmpty() ) return;
BinaryNode<E> seek = root;
ArrayDeque<BinaryNode<E>> stack = new ArrayDeque<>();
while( seek.left != null ) {
stack.push( seek );
seek = seek.left;
}
stack.peek().left = null;
balance( stack );
}
public void removeMax() {
if( isEmpty() ) return;
BinaryNode<E> seek = root;
ArrayDeque<BinaryNode<E>> stack = new ArrayDeque<>();
while( seek.right != null ) {
stack.push( seek );
seek = seek.right;
}
stack.peek().right = null;
balance( stack );
}
}