所谓遍历是指对树中所有结点的信息的访问,即依次对树中每个结点访问一次且仅访问一次,我们把这种对所有节点的访问称为遍历 (traversal)。
那么树的两种重要的遍历模式是深度优先遍历和广度优先遍历,
一般情况下能用递归实现的算法大部分也能用堆栈来实现。
对于一颗二叉树,深度优先搜索(Depth First Search)是沿着树的深度遍历树的节点,尽可能深的搜索树的分支。
那么深度遍历有重要的三种方法。这三种方式常被用于访问树的节点,它们之间的不同在于访问每个节点的次序不同。这三种遍历分别叫做先序遍历(preorder),中序遍历(inorder)和后序遍历(postorder)。我们来给出它们的详细定义,然后举例看看它们的应用。
先序遍历 在先序遍历中,我们先访问根节点,然后递归使用先序遍历访问左子树,再递归使用先序遍历访问右子树
根节点->左子树->右子树
def preorder(self, root):
"""递归实现先序遍历"""
if root == None:
return
print(root.elem)
self.preorder(root.lchild)
self.preorder(root.rchild)
中序遍历 在中序遍历中,我们递归使用中序遍历访问左子树,然后访问根节点,最后再递归使用中序遍历访问右子树
左子树->根节点->右子树
def inorder(self, root):
"""递归实现中序遍历"""
if root == None:
return
self.inorder(root.lchild)
print(root.elem)
self.inorder(root.rchild)
后序遍历 在后序遍历中,我们先递归使用后序遍历访问左子树和右子树,最后访问根节点
左子树->右子树->根节点
def postorder(self, root):
"""递归实现后续遍历"""
if root == None:
return
self.postorder(root.lchild)
self.postorder(root.rchild)
print(root.elem)
广度优先搜索BFS(Breadth First Search)也称为宽度优先搜索,它是一种先生成的结点先扩展的策略。
在广度优先搜索算法中,解答树上结点的扩展是按它们在树中的层次进行的。首先生成第一层结点,同时检查目标结点是否在所生成的结点中,如果不在,则将所有的第一层结点逐一扩展,得到第二层结点,并检查第二层结点是否包含目标结点,……,对层次为n+1的任一结点进行扩展之前,必须先考虑层次完层次为n的结点的每种可能的状态。因此,对于同一层结点来说,求解问题的价值是相同的,可以按任意顺序来扩展它们。通常采用的原则是先生成的结点先扩展。
为了便于进行搜索,要设置一个表存储所有的结点。由于在广度优先搜索算法中,要满足先生成的结点先扩展的原则,所以存储结点的表一般采用**队列**这种数据结构。
广度优先搜索算法的搜索步骤一般是:
(1)从队列头取出一个结点,检查它按照扩展规则是否能够扩展,如果能则产生一个新结点。
(2)检查新生成的结点,看它是否已在队列中存在,如果新结点已经在队列中出现过,就放弃这个结点,然后回到第(1)步。否则,如果新结点未曾在队列中出现过,则将它加入到队列尾。
(3)检查新结点是否目标结点。如果新结点是目标结点,则搜索成功,程序结束;若新结点不是目标结点,则回到第(1)步,再从队列头取出结点进行扩展。
最终可能产生两种结果:找到目标结点,或扩展完所有结点而没有找到目标结点。
如果目标结点存在于解答树的有限层上,广度优先搜索算法一定能保证找到一条通向它的最佳路径,因此广度优先搜索算法特别适用于只需求出最优解的问题。当问题需要给出解的路径,则要保存每个结点的来源,也就是它是从哪一个节点扩展来的。
代码实现:
从树的root开始,从上到下 + 从左到右 遍历整个树的节点
def breadth_travel(self, root):
"""利用队列实现树的层次遍历"""
if root == None:
return
queue = []
queue.append(root)
while queue:
node = queue.pop(0)
print(node.elem)
if node.lchild != None:
queue.append(node.lchild)
if node.rchild != None:
queue.append(node.rchild)
本文内容整理自七月学堂课件内容
参考:
https://www.cnblogs.com/cs-whut/p/11147348.html