- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- 利用Gpu训练
兮℡檬,
深度学习人工智能
方法一:分别对网络模型,数据(输入,标注),损失函数调用.cuda()网络模型:iftorch.cuda.is_available():net=net.cuda()数据(训练和测试):iftorch.cuda.is_available():imgs=imgs.cuda()targets=targets.cuda()损失函数:iftorch.cuda.is_available():loss_fn=l
- PyTorch 使用指南
PyTorch是一个功能强大且灵活的Python开源机器学习库,以其动态计算图和直观的Pythonic接口而闻名。本指南将带您了解PyTorch的基础操作,包括张量创建、自动求导,以及如何构建、训练和优化神经网络模型。我们还将深入探讨其在图像分类(以CIFAR-10为例)和自然语言处理(以灾难推文分类为例)等特定领域的应用,并概述其在图像分割和强化学习等其他领域的应用。PyTorch使用指南1.P
- 【三维目标检测】Complex-Yolov4详解(二):模型结构
Coding的叶子
Python三维点云实战宝典Complex-YoloComplex-Yolov4三维目标检测目标检测python
本文为博主原创文章,未经博主允许不得转载。本文为专栏《python三维点云从基础到深度学习》系列文章,地址为“https://blog.csdn.net/suiyingy/article/details/124017716”。Complex-Yolo网络模型的核心思想是用鸟瞰图BEV替换Yolo网络输入的RGB图像。因此,在完成BEV处理之后,模型的训练和推理过程基本和Yolo完全一致。Yolov
- 结合Golang语言说明对多线程编程以及 select/epoll等网络模型的使用
zhoupenghui168
golang计算机网络golang网络数据库select网络模型epoll网络模型多线程编程
首先介绍select和epoll这两个I/O多路复用的网络模型,然后介绍多线程编程,最后结合Go语言项目举例说明如何应用一、select和epoll的介绍1.select模型select是一种I/O多路复用技术,它允许程序同时监视多个文件描述符(通常是套接字),等待一个或多个描述符就绪(可读、可写或异常)然后进行相应的操作,它的跨平台兼容性好(Windows/Linux/macOS)核心原理:使用
- C++语言的网络编程
东方苾梦
包罗万象golang开发语言后端
C++网络编程入门指南引言在当今信息技术飞速发展的时代,网络编程已经成为一个不可或缺的技能。无论是开发网络应用、游戏,还是进行数据处理,掌握网络编程的基本概念和技术,都将大大提高一个程序员的能力。本文将介绍C++语言在网络编程中的应用,包括基础概念、常用库、编程实践等内容,希望能帮助读者更好地理解和掌握C++网络编程。第一章:网络编程基础知识1.1网络模型在讨论网络编程之前,我们必须理解现代网络通
- 一文搞懂 TCP TCP/IP 和 TCP/IP网络分层之间的联系和区别
你好,我是shengjk1,多年大厂经验,努力构建通俗易懂的、好玩的编程语言教程。欢迎关注!你会有如下收益:了解大厂经验拥有和大厂相匹配的技术等希望看什么,评论或者私信告诉我!文章目录一、背景二、核心概念解释三、三者之间的联系四、三者的关键区别五、总结一下一、背景最近遇到了TCP,立马想起来了TCP/IP、TCP/IP网络模型,特别容易混淆。特别是有人说TCP/IP的时候,你根本不知道他说的是啥:
- 0基础纯新手小白也能成大神 之 计算机网络概论
目录计算机网络概论一、概述1、概念2、网络发展史3、网络的四要素4、网络的功能5、网络的类型6、网络协议与标准7、常见概念8、网络拓扑结构二、网络模型1、分层思想2、OSI七层模型1、物理层(最底层)2、数据链路层3、网络层4、传输层5、会话层6、表示层7、应用层(最高层)3、TCP/IP五层模型1物理层2数据链路层3、网络层4、传输层5、应用层4、数据的封装与解封过程4.1PUD4.2数据封装与
- 详谈OSI七层模型和TCP/IP四层模型以及tcp与udp为什么是4层,http与https为什么是7层
一个向上的运维者
网络协议网络
一、网络模型:OSI七层vsTCP/IP四层OSI七层模型(理论参考模型):目的:提供一个标准化的理论框架,用于理解网络通信过程和各层的功能划分,促进不同厂商设备的互操作性。它是一个理想化的模型。分层(从下到上):物理层:传输原始比特流(光、电信号),定义物理接口特性。数据链路层:在直接相连的节点间可靠传输数据帧(Frame),处理物理寻址(MAC地址)、错误检测。网络层:负责跨网络的数据包(Pa
- Kubernetes 网络插件 Calico 深度解析与实战:从原理到性能优化
爱熬夜的小古
php开发语言
在云原生生态中,Kubernetes作为容器编排的事实标准,其网络的高效配置与稳定运行至关重要。Calico作为Kubernetes主流网络插件之一,凭借高性能、强安全性和灵活的策略控制能力,受到众多企业青睐。本文将深入剖析Calico的技术原理、实战应用及性能优化策略,助你全面掌握这一关键技术。一、Calico网络架构核心原理1.1网络模型基础Calico基于纯三层IP网络模型构建,摒弃传统的O
- Kubernetes网络插件Calico深度解析:组件架构、网络模型与BGP路由反射器实战
AGI学习社
kubernetes网络架构语言模型php数据挖掘javascript
Kubernetes网络插件Calico深度解析:组件架构、网络模型与BGP路由反射器实战作为Kubernetes生态中最强大的容器网络方案之一,Calico凭借其高性能、灵活的策略控制及对标准协议的支持,成为企业级容器网络的首选。本文将深入剖析Calico的组件架构、核心网络模型原理,并通过BGP路由反射器的配置实战,带你全面掌握Calico的底层机制与高级应用技巧。Calico核心组件解析1.
- 四值逻辑门网络模型构建与性能优化
pk_xz123456
python算法神经网络性能优化自动化运维深度学习分类
四值逻辑门网络模型构建与性能优化1.引言随着深度学习技术的快速发展,传统神经网络架构在图像识别任务中取得了显著成果。然而,这些网络通常依赖于大量浮点运算,导致计算资源消耗大、能效比低。本文提出一种基于四值逻辑门的神经网络模型,旨在保持高准确率的同时,探索更高效的网络架构。四值逻辑系统相比传统的二值逻辑,能够表示更丰富的信息(0,1,2,3),同时相比全精度浮点运算又保持了较高的计算效率。我们的模型
- MNIST 手写数字识别模型分析
橘子编程
Python学习指南pythonmatplotlib
功能概述这段代码实现了一个基于TensorFlow和Keras的MNIST手写数字识别模型。主要功能包括:加载并预处理MNIST数据集构建一个简单的全连接神经网络模型训练模型并评估其性能使用训练好的模型进行预测保存和加载模型代码解析1.导入必要的库importmatplotlibimporttensorflow.kerasaskerasimporttensorflowastfimportnumpy
- Yolov5s/Yolov8s网络结构图
Goodness2020
机器学习YOLO
一、网络模型配置Yolov5s#Parametersnc:1#numberofclassesdepth_multiple:0.33#modeldepthmultiplewidth_multiple:0.50#layerchannelmultipleanchors:-[10,13,16,30,33,23]#P3/8-[30,61,62,45,59,119]#P4/16-[116,90,156,198
- 使用PyTorch进行猫狗图像分类实战指南
op3721
本文还有配套的精品资源,点击获取简介:本文详细介绍了如何利用PyTorch框架来执行一个猫狗分类任务。从数据预处理、构建全连接网络模型、训练过程到评估指标等方面进行了全面阐释。内容涵盖了图像数据的收集、标准化处理,以及如何使用DataLoader类来提高数据加载效率。接着,本文讲解了如何构建和定义网络结构,选用交叉熵损失函数,并利用SGD或Adam优化器进行权重更新。在训练模型时,我们会进行多个e
- 人工神经网络的拓扑结构,神经网络的神经元结构
快乐的小蓝猫
神经网络深度学习人工智能rnn
bp神经网络BP(BackPropagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经
- Kubernetes面试题分类整理
jarenyVO
面试题K8skubernetes容器云原生
Kubernetes面试题分类整理文章目录Kubernetes面试题分类整理一、基础概念类1.什么是Kubernetes?它解决了什么问题?2.Pod是什么?为什么需要Pod而不是直接使用容器?二、核心组件类1.Kubernetes主节点(Master)有哪些核心组件?各自的作用是什么?2.kubelet和kube-proxy有什么区别?三、网络类1.Kubernetes网络模型的基本原则是什么?
- 计算机网络技术
CZZDg
计算机网络
目录一.网络概述1.网络的概念2.网络发展是3.网络的四要素4.网络功能5.网络类型6.网络协议与标准7.网络中常见的概念8.网络拓补结构二.网络模型1.分层思想2.OSI七层模型3.TCP/IP五层模型4.数据的封装与解封装过程三.IP地址1.进制转换2.IP地址定义3.IP地址组成成分4.IP地址分类5.地址划分6、相关概念一.网络概述1.网络的概念两个主机通过传输介质和通信协议实现通信和资源
- 如何使用Python实现交通工具识别
如何使用Python实现交通工具识别文章目录技术架构功能流程识别逻辑用户界面增强特性依赖项主要类别内容展示该系统是一个基于深度学习的交通工具识别工具,具备以下核心功能与特点:技术架构使用预训练的ResNet50卷积神经网络模型(来自ImageNet数据集)集成图像增强预处理技术(随机裁剪、旋转、翻转等)采用多数投票机制提升预测稳定性基于置信度评分的结果筛选策略功能流程用户通过GUI界面选择待识别图
- YOLOv5基础 | 万字长文带你深度解析yolov5s.yaml配置文件
小哥谈
YOLO算法:基础+进阶+改进YOLO人工智能目标检测机器学习计算机视觉深度学习
前言:Hello大家好,我是小哥谈。配置文件yolov5s.yaml在YOLOv5模型训练过程中发挥着至关重要的作用,属于初学者必知必会的文件!在YOLOv5-6.0版本源码中,配置了5种不同大小的网络模型,分别是YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x,其中YOLOv5n是网络深度和宽度最小但检测速度最快的模型,其他4种模型都是在YOLOv5n的基础上不断加
- Docker网络模型深度解析|Docker|网络模型|容器化
concisedistinct
运维编程开发技术栈Dockerdocker容器运维
目录1.Docker网络模型概述1.1Docker网络的基本概念1.2Docker的主要网络模式2.Bridge网络模式2.1Bridge模式的工作原理2.2Bridge模式的网络配置2.3Bridge模式的应用场景3.Host网络模式3.1Host模式的工作原理3.2Host模式的优缺点3.3Host模式的应用场景4.Overlay网络模式4.1Overlay模式的工作原理4.2Overlay模
- 【PyTorch】PyTorch中torch.nn模块的卷积层
PyTorch深度学习总结第七章PyTorch中torch.nn模块的卷积层文章目录PyTorch深度学习总结前言一、torch.nn模块1.模块的基本组成部分1.1层(Layers)1.2损失函数(LossFunctions)1.3激活函数(ActivationFunctions)2.自定义神经网络模型3.模块的优势二、torch.nn模块的卷积层1.卷积的定义2.常见的卷积层3.卷积层的重要参
- PyTorch 的 torch.nn 模块学习
torch.nn是PyTorch中专门用于构建和训练神经网络的模块。它的整体架构分为几个主要部分,每部分的原理、要点和使用场景如下:1.nn.Module原理和要点:nn.Module是所有神经网络组件的基类。任何神经网络模型都应该继承nn.Module,并实现其forward方法。使用场景:用于定义和管理神经网络模型,包括层、损失函数和自定义的前向传播逻辑。主要API和使用场景:__init__
- Docker 容器间通信:Link 与自定义网络
Docker容器间通信:Link与自定义网络关键词:Docker容器通信、容器网络模型、DockerLink、自定义网络、Bridge网络、Overlay网络、网络驱动摘要:本文深入解析Docker容器间通信的两种核心方式——传统Link机制与现代自定义网络方案。通过对比分析两者的技术原理、实现方式、适用场景及最佳实践,帮助读者理解Docker网络架构的演进逻辑。文章从容器网络基础概念出发,详细阐
- 长短期记忆(LSTM)网络模型
凌莫凡
lstm人工智能rnn深度学习神经网络
一、概述 长短期记忆(LongShort-TermMemory,LSTM)网络是一种特殊的循环神经网络(RNN),专门设计用于解决传统RNN在处理长序列数据时面临的梯度消失/爆炸问题,能够有效捕捉长距离依赖关系。其核心在于引入记忆细胞(CellState)和门控机制(GateMechanism),通过控制信息的流动来实现对长期信息的存储与遗忘。二、模型原理 LSTM由记忆细胞和三个门控单元(遗
- 什么是神经网络架构搜索(NAS, Neural Architecture Search),如何写对应的python程序代码呢
小桥流水---人工智能
算法深度学习Python程序代码神经网络架构python
一、什么是神经网络架构搜索(NAS,NeuralArchitectureSearch)神经网络架构搜索(NAS,NeuralArchitectureSearch)是一种用于自动化设计神经网络架构的技术。传统的神经网络模型架构设计通常依赖于专家经验和大量试错,而NAS通过算法自动搜索网络架构,以发现最适合特定任务的神经网络设计。NAS可以极大地减少人工调参的时间和精力,并且在某些情况下能够找到比手工
- 端到端自动驾驶系统关键技术
未来创世纪
自动驾驶自动驾驶人工智能机器学习
一、感知决策一体化模型架构单一神经网络整合全流程端到端神经网络能够直接将传感器输入映射为控制输出,消除了传统模块化架构中感知、规划、控制等独立模块之间的割裂。传统架构中,感知模块负责识别环境信息,决策模块根据感知结果进行路径规划和决策制定,控制模块再根据决策执行车辆的操作,各模块之间存在信息传递损耗和延迟。而端到端架构通过一个单一的神经网络模型,将整个流程整合在一起,使传感器采集到的数据能够直接用
- 计算机网络高频面试题
1、介绍一下ISO七层网络模型?ISO七层网络模型(OSI参考模型)是国际标准化组织(ISO)提出的网络通信框架,将网络通信划分为七个逻辑层次,每层提供特定的服务并与相邻层交互。其核心目的是实现不同厂商设备的互操作性,并简化网络通信的设计与故障排查。(1)OSI七层模型的结构:物理层(PhysicalLayer)功能:负责传输原始比特流,定义电压、接口等物理特性。关键技术:双绞线、光纤、无线信号(
- 大语言模型(LLM)笔记
笑衬人心。
大模型学习语言模型笔记人工智能
一、什么是大语言模型(LLM)?LLM(LargeLanguageModel)是基于Transformer架构构建,并在海量文本语料上训练出的具备自然语言理解和生成能力的深度神经网络模型。其本质任务是**预测下一个token(词/字/符号)**的概率分布,但通过大规模参数和数据的支持,表现出类人智能的行为。二、核心架构:Transformer由Google在2017年提出,是目前LLM的主流架构。
- nnv开源神经网络验证软件工具
一、软件介绍文末提供程序和源码下载用于神经网络验证的Matlab工具箱,该工具箱实现了可访问性方法,用于分析自主信息物理系统(CPS)领域中带有神经网络控制器的神经网络和控制系统。二、相关工具和软件该工具箱利用神经网络模型转换工具(nnmt)和闭环系统分析、混合系统模型转换和转换工具(HyST)以及CONTINUOUSReachabilityAnalyzer(CORA)三、无需安装即可执行NNV可
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep