原文可见:https://jiajunhuang.com/articles/2019_10_30-sqlalchemy.md.html
SQLAlchemy是Python中常用的一个ORM,SQLAlchemy分成三部分:
update
, insert
等等,也可以直接使用这部分来进行操作,但是它们写起来没有ORM那么自然它们的关系如下(图片来自官网):
我们先来看看一个简单的例子:
import contextlib
from sqlalchemy.ext.declarative import declarative_base
from sqlalchemy.orm import sessionmaker
from sqlalchemy import (
create_engine,
Column,
Integer,
DateTime,
String,
)
from config import config # config模块里有自己写的配置,我们可以换成别的,注意下面用到config的地方也要一起换
engine = create_engine(
config.SQLALCHEMY_DATABASE_URI, # SQLAlchemy 数据库连接串,格式见下面
echo=bool(config.SQLALCHEMY_ECHO), # 是不是要把所执行的SQL打印出来,一般用于调试
pool_size=int(config.SQLALCHEMY_POOL_SIZE), # 连接池大小
max_overflow=int(config.SQLALCHEMY_POOL_MAX_SIZE), # 连接池最大的大小
pool_recycle=int(config.SQLALCHEMY_POOL_RECYCLE), # 多久时间回收连接
)
Session = sessionmaker(bind=engine)
Base = declarative_base(engine)
class BaseMixin:
"""model的基类,所有model都必须继承"""
id = Column(Integer, primary_key=True)
created_at = Column(DateTime, nullable=False, default=datetime.datetime.now)
updated_at = Column(DateTime, nullable=False, default=datetime.datetime.now, onupdate=datetime.datetime.now, index=True)
deleted_at = Column(DateTime) # 可以为空, 如果非空, 则为软删
@contextlib.contextmanager
def get_session():
s = Session()
try:
yield s
s.commit()
except Exception as e:
s.rollback()
raise e
finally:
s.close()
class User(Base, BaseMixin):
__tablename__ = "user"
Name = Column(String(36), nullable=False)
Phone = Column(String(36), nullable=False, unique=True)
我们注意上面的几点:
engine = create_engine(<数据库连接串>)
,数据库连接串的格式是 dialect+driver://username:password@host:port/database?参数
这样的,dialect 可以是 mysql
, postgresql
, oracle
, mssql
, sqlite
,后面的 driver 是驱动,比如MySQL的驱动pymysql, 如果不填写,就使用默认驱动。再往后就是用户名、密码、地址、端口、数据库、连接参数了,我们来看几个例子:
engine = create_engine('mysql+pymysql://scott:tiger@localhost/foo?charset=utf8mb4')
engine = create_engine('postgresql+psycopg2://scott:tiger@localhost/mydatabase')
engine = create_engine('oracle+cx_oracle://scott:tiger@tnsname')
engine = create_engine('mssql+pymssql://scott:tiger@hostname:port/dbname')
engine = create_engine('sqlite:////absolute/path/to/foo.db')
with get_session() as s:
print(s.query(User).first())
s.query(User).filter_by(User.name="nick").first()
。表的设计通常就如 User
表一样:
class User(Base, BaseMixin):
__tablename__ = "user"
Name = Column(String(36), nullable=False)
Phone = Column(String(36), nullable=False, unique=True)
首先使用 __tablename__
自定义表名,接着写各个表中的属性,也就是对应在数据库表中的列(column),常见的类型有:
$ egrep '^class ' ~/.pyenv/versions/3.6.0/lib/python3.6/site-packages/sqlalchemy/sql/sqltypes.py
class _LookupExpressionAdapter(object):
class Concatenable(object):
class Indexable(object):
class String(Concatenable, TypeEngine):
class Text(String):
class Unicode(String):
class UnicodeText(Text):
class Integer(_LookupExpressionAdapter, TypeEngine):
class SmallInteger(Integer):
class BigInteger(Integer):
class Numeric(_LookupExpressionAdapter, TypeEngine):
class Float(Numeric):
class DateTime(_LookupExpressionAdapter, TypeEngine):
class Date(_LookupExpressionAdapter, TypeEngine):
class Time(_LookupExpressionAdapter, TypeEngine):
class _Binary(TypeEngine):
class LargeBinary(_Binary):
class Binary(LargeBinary):
class SchemaType(SchemaEventTarget):
class Enum(Emulated, String, SchemaType):
class PickleType(TypeDecorator):
class Boolean(Emulated, TypeEngine, SchemaType):
class _AbstractInterval(_LookupExpressionAdapter, TypeEngine):
class Interval(Emulated, _AbstractInterval, TypeDecorator):
class JSON(Indexable, TypeEngine):
class ARRAY(SchemaEventTarget, Indexable, Concatenable, TypeEngine):
class REAL(Float):
class FLOAT(Float):
class NUMERIC(Numeric):
class DECIMAL(Numeric):
class INTEGER(Integer):
class SMALLINT(SmallInteger):
class BIGINT(BigInteger):
class TIMESTAMP(DateTime):
class DATETIME(DateTime):
class DATE(Date):
class TIME(Time):
class TEXT(Text):
class CLOB(Text):
class VARCHAR(String):
class NVARCHAR(Unicode):
class CHAR(String):
class NCHAR(Unicode):
class BLOB(LargeBinary):
class BINARY(_Binary):
class VARBINARY(_Binary):
class BOOLEAN(Boolean):
class NullType(TypeEngine):
class MatchType(Boolean):
我们来看看使用SQLAlchemy完成常见的操作,例如增删查改:
SELECT * FROM user
应该这样写:with get_session() as s:
print(s.query(User).all())
SELECT * FROM user WHERE name='nick'
应该这样写:with get_session() as s:
print(s.query(User).filter_by(User.name='nick').all())
print(s.query(User).filter(User.name == 'nick').all()) # 这样写是等同效果的
SELECT * FROM user WHERE name='nick' LIMIT 1
应该这样写:with get_session() as s:
print(s.query(User).filter_by(User.name='nick').first())
如果需要加判定,例如确保只有一条数据,那就把 first()
替换为 one()
,如果确保一行或者没有,那就写 one_or_none()
。
SELECT * FROM user ORDER BY id DESC LIMIT 1
应该这样写:with get_session() as s:
print(s.query(User).order_by(User.id.desc()).first())
SELECT * FROM user ORDER BY id DESC LIMIT 1 OFFSET 20
应该这样写:with get_session() as s:
print(s.query(User).order_by(User.id.desc()).offset(20).first())
DELETE FROM user
应该这样写:with get_session() as s:
s.query(User).delete()
DELETE FROM user WHERE name='nick'
:with get_session() as s:
s.query(User).filter_by(User.name='nick').delete()
DELETE FROM user WHERE name='nick' LIMIT 1
:with get_session() as s:
s.query(User).filter_by(User.name='nick').limit(1).delete()
UPDATE user SET name='nick'
:with get_session() as s:
s.query(User).update({'name': 'nick'})
UPDATE user SET name='nick' WHERE id=1
:with get_session() as s:
s.query(User).filter_by(User.id=1).update({'name': 'nick'})
也可以通过更改实例的属性,然后提交:
with get_session() as s:
user = s.query(User).filter_by(User.id=1).one()
user.name = 'nick'
s.commit()
这个就简单了,实例化对象,然后 session.add
,最后提交:
with get_session() as s:
user = User()
s.add(user)
s.commit()
SQLAlchemy 中可以直接使用join语句:
with get_session() as s:
s.query(Customer).join(Invoice).filter(Invoice.amount == 8500)
可以是这么几种写法:
query.join(Address, User.id==Address.user_id) # explicit condition
query.join(User.addresses) # specify relationship from left to right
query.join(Address, User.addresses) # same, with explicit target
query.join('addresses') # same, using a string
我们使用alembic来做数据库migration,首先安装:
$ pip install alembic
$ alembic init alembic # 此处 alembic init 后接的是保存migration的文件夹名称
然后我们要修改 alembic/env.py
(假设你设置的保存migration的文件夹名称就是 alembic
),将对应部分修改成如下:
config.set_main_option(
'sqlalchemy.url', config.SQLALCHEMY_DATABASE_URI
)
target_metadata = Base.metadata # 从任意一个我们的model可以拿到总的Base
engine = target_metadata.bind
因为SQLAlchemy会把表的信息存储在 metadata 里,而我们都继承了 Base
,因此可以 通过 Base.metadata
来拿到所有表的信息,这样子alembic才能够拿到表的结构,然后和 数据库进行对比,生成migration脚本:
$ alembic revision --autogenerate -m '本次migration的信息,相当于git提交时的评论'
这一篇中我们看了如何使用SQLAlchemy来进行常见的操作,我们首先从如何定义表开始,接着我们注意看了常见的SQL操作对应的 SQLAlchemy操作是怎样的,最后我们看了以下alembic应该怎么配置才能自动生成migration脚本。
参考资料:
更多文章