- 2023-2024步态识别论文研读系列02(AAAI2024)SkeletonGait: Gait Recognition Using Skeleton Maps
论文题目:SkeletonGait:GaitRecognitionUsingSkeletonMaps基于骨骼图的步态识别论文地址:[2311.13444]SkeletonGait:GaitRecognitionUsingSkeletonMaps代码地址:ShiqiYu/OpenGait:Aflexibleandextensibleframeworkforgaitrecognition.Youcan
- 论文研读 | 解耦动态时空图神经网络交通预测
时空大数据小组
深度学习交通物流时序数据库
DecoupledDynamicSpatial-TemporalGraphNeuralNetworkforTrafficForecasting本文是由中科院大学2022年发表于VLDB会议的一篇文章,作者创新地提出了一种解耦时空框架——DSTF,提升了模型在交通流预测任务中的性能,并在两个真实数据集上进行了验证。作者通过将先验知识融合进模型结构中,从而提升模型性能的思路值得借鉴,以下对论文进行分享
- 【论文研读】Better Together:Unifying Datalog and Equality Saturation
被制作时长两年半的个人练习生
Datalog编程语言Datalog程序分析
最近研究ReassociatePass整的头大,翻两篇Datalog的论文看看。今天看的一篇是比较新的文章,23年4月贴到arxiv上的。本文的主要贡献是提出了egglog,将Datalog和Eqsat结合起来,继承了Datalog的efficientincrementalexecution,cooperatinganalysisandlattice目录Introduction部分BackGrou
- 经典论文研读:《Bigtable: A Distributed Storage System for Structured Data》
WanderingScorpion
论文研读检索技术论文研读数据存储原力计划
一概述BigTable是以大神JeffreyDean为首的Google团队在2006年公开的分布式存储系统,是Google“三驾马车”论文中(GFS、MapReduce、BigTable)中最后公开的。在BigTable论文中,Google构思、设计并实现了一套支持结构化数据存储的超大容量分布式存储系统。BigTable中关于数据模型、底层存储技术和架构模型的设计思路直到今日仍被奉为经典,下面我们
- 深度学习学习笔记-论文研读4-基于深度强化学习的多用户边缘计算任务卸载调度与资源分配算法
丰。。
神经网络论文研读学报论文研读学习边缘计算算法人工智能深度学习
本人学识浅薄,如有理解不到位的地方还请大佬们指出,相互学习,共同进步概念引入强化学习DQN算法边缘计算边缘计算,是指在靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台,就近提供最近端服务。其应用程序在边缘侧发起,产生更快的网络服务响应,满足行业在实时业务、应用智能、安全与隐私保护等方面的基本需求。边缘计算处于物理实体和工业连接之间,或处于物理实体的顶端。而云端计算,仍然可
- 通俗科普文:贝叶斯优化与SMBO、高斯过程回归、TPE(附新书)
科技州与数据州
以下文章来源于SimpleAI,作者郭必扬贝叶斯优化是AutoML中的重要概念,近年来变得很火热。作为一种重要的基于先验的调参/策略选择技术,贝叶斯的应用范围也很广。但这个概念对于初次接触的同学可能较难理解,经过数天的论文研读、博客/教程/代码查阅,我总结了这篇科普文,也手绘了一些示意图,希望尽量在一篇文章内、通俗易懂地讲清楚什么是贝叶斯优化。本文目录:理清基本概念的关系各种超参数调节方法的对比G
- 【论文研读】基于卷积神经网络的图像局部风格迁移
lexonT
自2015年Gatys首次提出神经艺术风格迁移框架以来,图像风格迁移逐渐成为计算机图形学和计算机视觉领域的一个研究热点,但是当前针对图像风格迁移的研究大多难以提取图像中的局部进行风格迁移,而将重心放在图像全局风格迁移上,针对局部风格迁移这一研究领域上的空白,浙江工业大学缪永伟与浙江理工大学、中科院自动化研究所合作发表了《基于卷积神经网络的图像局部风格迁移》一文。文中提出了一种基于卷积神经网络的图像
- 2024 1.6~1.12 周报
shengMio
周报深度学习机器学习
一、上周工作论文研读二、本周计划思考毕业论文要用到的方法或者思想,多查多看积累可取之处。学习ppt和上周组会内容、卷积神经网络。三、完成情况1.数据训练的方式1.1迁移学习迁移学习是一种机器学习方法,把任务A训练出的模型作为初始模型,并使用它来改进新目标任务B的学习。即通过从已学习的相关任务中转移知识来改进学习的新任务。这可以包括使用模型作为特征提取器,微调模型,或使用模型的部分作为初始化。找到目
- OpenFWI 论文研读
shengMio
论文深度学习
论文title:OPENFWI:Large-scaleMulti-structuralBenchmarkDatasetsforFullWaveformInversion——OPENFWI:基于全波形反演的大规模多结构基准数据集摘要Abstract:全波形反演(FWI)在地球物理中被广泛用于从地震数据中重建高分辨率速度图。OPENFWI由12个数据集(共2.1TB)组成,这些数据集是从多个来源合成的
- 【论文研读】Detection of redundant expressions: A precise, efficient, and pragmatic algorithm in SSA.
被制作时长两年半的个人练习生
编程语言c++编译器值编号程序优化LLVM
继续研读GVN领域的文章,又是一篇重要的文章,此文提出的算法已经在LLVM中实现为NewGVN。能够找到所有Herbrand等值关系且时间复杂度为polynomial。目录IntroductionTheProblemTerminologyBasicConceptAlgorithmCorrectnessproofandcomplexityanalysisExperimentalresultsRela
- 【论文研读】Furthering Datalog in the pursuit of program analysis
被制作时长两年半的个人练习生
编程语言linux运维服务器
最近准备开一个新坑,记录一下读过的一些论文,主要聚焦笔者在阅读过程中的感悟,一些重点算法的理解,以及笔者觉得可以改进的地方。本文为系列的第一篇,试试水先。本文选择的论文是FurtheringDataloginthepursuitofprogramanalysis。是一篇剑桥大学的博士论文,发现此文的契机是在对valuenumbering技术进行跟踪时发现了一篇2004年的APolynomial-T
- 论文研读:基于统计重加权的方法减少通用回复
飞剑客阿飞
论文研读:基于统计重加权的方法减少通用回复会议名称:EMNLP2018文章题目:TowardsLessGenericResponsesinNeuralConversationModels:AStatisticalRe-weightingMethod原文链接:https://link.zhihu.com/?target=https%3A//www.paperweekly.site/papers/24
- 【论文研读】Minimax and Biobjective Portfolio Selection Based on Collaborative Neurodynamic Optimization
如果皮卡会coding
论文研读投资组合论文阅读minimax
MinimaxandBiobjectivePortfolioSelectionBasedonCollaborativeNeurodynamicOptimization基于协同神经动力学优化的极大极小双目标投资组合选择文章目录MinimaxandBiobjectivePortfolioSelectionBasedonCollaborativeNeurodynamicOptimization一.基本信
- 【10大专题,2.8w字详解】:从张量开始到GPT的《动手学深度学习》要点笔记
hadiii
gpt深度学习笔记人工智能transformer
《动手学深度学习PyTorch版》复习要点全记录专注于查漏补缺、巩固基础,这份笔记将带你深入理解深度学习的核心概念。通过一系列精心整理的小专题,逐步构建起你的AI知识框架。从最基础的张量操作,到最新的GPT模型,每个专题都配备了直观的图示和详细的公式解析。初版笔记以《动手学深度学习PyTorch版》书籍为基准,随后将根据视频讲解和最新论文研读内容进行实时更新。所有专题都配备了精美的图表和公式推导。
- 论文研读:基于统计重加权的方法减少通用回复
飞剑客阿飞
论文研读:基于统计重加权的方法减少通用回复会议名称:EMNLP2018文章题目:TowardsLessGenericResponsesinNeuralConversationModels:AStatisticalRe-weightingMethod原文链接:https://link.zhihu.com/?target=https%3A//www.paperweekly.site/papers/24
- 基于边缘计算的电力智慧物联系统设计与实现(论文研读)
椒椒。
边缘计算人工智能大数据
基于边缘计算的电力智慧物联系统设计与实现摘要:0引言1电力智慧物联系统架构设计1.1总体框架设计1.2物模型设计1.3边缘计算1.4交互协议1.5面向云边协同的智能生态1.5.1应用开发1.5.2智能生态1.5.3云边协同2实验验证及试点建设2.1实验测试2.1.1功能型测试2.1.2非功能性测试2.2现场试点建设3结语参考文献:基于边缘计算的电力智慧物联系统设计与实现.-论文研读崔恒志1,蒋承伶
- FreeMatch: Self-adaptive Thresholding for Semi-supervised Learning[论文研读笔记2023的ICLR]
白兔1205
汇报论文人工智能
原文链接:https://arxiv.org/abs/2205.07246代码链接:https://github.com/microsoft/Semi-supervised-learning作者视频讲解链接:https://www.bilibili.com/video/BV14L411k7De/?spm_id_from=333.999.0.0&vd_source=90e27a3caa4ef021d
- 论文研读|An Embarrassingly Simple Approach for Intellectual Property Rights Protection on RNNs
_Meilinger_
神经网络水印论文研读AI安全神经网络水印语言模型白盒水印版权保护模型水印RNN
目录论文信息文章简介研究动机研究方法白盒水印水印信号构造黑盒水印触发集构造水印嵌入实验结果保真度&有效性鲁棒性抗移除攻击(RemovalAttack)抗模型剪枝(ModelPruning)抗微调攻击(Fine-Tuning)抗水印覆写攻击(Overwriting)抗伪造攻击(Anti-AmbiguityAttacl)隐蔽性迁移性CaseStudy方法评估相关文献论文信息论文名称:AnEmbarra
- pointNet复现、论文和代码研读
苏钟白
python
文章目录论文复现论文研读1.动机2.模型结构3.实验效果4.总结代码研读模型什么时候保存,保存到哪里?模型训练的数据集?为什么是在CPU上运行的?运行的时候有输入gpu号如何测试模型的语义分割的效果?如何测试模型的分类效果?论文复现https:
- RFNet模型论文和代码研读
苏钟白
python
论文研读论文的代码:https://github.com/AHupuJR/RFNet论文动机截止到2020年,很少有实时的基于RGBD的分割模型。本文提出一种基于RGB-D的实时分割模型,可用于自动驾驶场景。模型的结构在编码器部分,两个独立的分支分别提取RGB的特征和深度的特征,RGB分支为主分支,深度分支为下级分支。每个分支都采用的ResNet18为骨干网络。深度分支输出的特征会通过AFC模块融
- 论文研读|Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
_Meilinger_
论文研读神经网络水印AI安全神经网络水印模型水印黑盒水印后门攻击深度学习
目录论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证实验结果保真度(Functionality-Preserving)&有效性(Effectiveness)鲁棒性(Unremovability)抗微调攻击抗伪造攻击(OwnershipPiracy)抗迁移学习ImageNet方法评估相关文献论文信息论文名称:TurningYourWeaknessIntoaStrength:Watermark
- 论文研读|Watermarking Deep Neural Networks for Embedded Systems
_Meilinger_
神经网络水印论文研读人工智能AI安全网络空间安全神经网络水印模型水印黑盒水印后门攻击
目录论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证实验结果方法评估有效性(Effectiveness)保真度(Fidelity)嵌入容量(Payload)假阳性(FalsePositiveRate)安全性(Security)篡改攻击(TamperingAttack)伪造攻击(GhostSignatureAttack)相关文献论文信息论文名称:WatermarkingDeepNeuralN
- 论文研读|Protecting Intellectual Property of Deep Neural Networks with Watermarking
_Meilinger_
神经网络水印论文研读人工智能深度学习机器学习AI安全神经网络水印黑盒水印后门攻击
目录论文信息文章简介研究动机研究方法水印生成水印嵌入版权验证实验结果有效性(Effectiveness)高效性(ConvergeSpeed)保真度(Functionality)鲁棒性(Robustness)Anti-剪枝攻击(Pruning)Anti-微调攻击(Fine-tuning)安全性(Security)Anti-模型逆向攻击(ModelInversion)方法评估相关文献论文信息论文名称:
- 论文研读 - share work - QPipe:一种并行流水线的查询执行引擎
yzs87
java开发语言
QPipe:一种并行流水线的查询执行引擎QPipe:ASimultaneouslyPipelinedRelationalQueryEngine关系型数据库通常独立执行并发的查询,每个查询都需执行一系列相关算子。为了充分利用并发查询中的数据扫描与计算,现有研究提出了丰富的技术:从缓存磁盘页以构建物化视图到优化多查询。然而,现有研究所提出的思想本质上受现代以查询为中心的引擎设计哲学所限制。理想状态下,
- MV-Map论文研读
高的好想出去玩啊
论文研读深度学习人工智能
MV-MapMV-Map:OffboardHD-MapGenerationwithMulti-viewConsistency论文:https://arxiv.org/pdf/2305.08851.pdfcode:https://github.com/ZiYang-xie/MV-Map代码未开源总体网络结构简述论文首次提出以非车载的方式产生高精度地图。可以视为在HDMapNet的优化版本,多三阶段网
- BEVFromer论文研读
高的好想出去玩啊
论文研读深度学习
1.总体结构上图为BEVFormer在t时刻的网络结构。图(a)表示的是BEVFormer的encoder层。BEVFormer有6个encoder层,每一个encoder除了本文自定义的三个组件外都和传统的transformers结果一致。自定义的三个组件分别是网格状的BEVqueries,TSA和SCA。其中BEVqueries的参数是可学习的,它通过注意力机制查询多相机视角下的BEV空间特征
- 论文研读|生成式跨模态隐写发展综述
_Meilinger_
文本隐写论文研读生成式隐写跨模态隐写SteganographyImageTextSpeech
前言:本文介绍近5年来生成式跨模态隐写领域的相关工作。相关阅读:生成式文本隐写发展综述不同于文本隐写,跨模态隐写需要考虑不同模态间的相关性,常见的跨模态场景有:Image-to-Text(如图像描述),Text-to-Speech(如语音助手),Text-to-Image(如按文作画)等。下面对基于深度学习的生成式跨模态隐写相关工作进行介绍。[1]-基于图像描述的文本信息隐藏(北京邮电大学学报,2
- 【连载】深度学习笔记14:CNN经典论文研读之Le-Net5及其Tensorflow实现
linux那些事
在前几次笔记中,笔者基本上将卷积神经网络的基本原理给讲完了。从本次笔记开始,笔者在深度学习笔记中会不定期的对CNN发展过程中的经典论文进行研读并推送研读笔记。今天笔者就和大家一起学习卷积神经网络和深度学习发展历史上具有奠基性的经典论文之一的关于LeNet-5网络一文。LeNet-5是由具有卷积神经网络之父之美誉的YannLeCun在1998年发表在IEEE上面的一篇Gradient-basedle
- TimeGAN学习记录
河马小白
GAN学习
一、学习TimeGAN主要参考的链接如下:(1)知乎上的TimeGAN论文研读(2)csdn上的一篇博客,论文阅读:《TimeSeriesGenerativeAdversrialNetworks》(TimeGAN,时间序列GAN)(3)时间序列丨基于TimeGAN模型生成时间序列数据及其Python实践二、我的理解TimeGAN无预测功能,只是对数据进行了分段处理并可以捕捉时序特征,但效果并不好?
- 第三周
YYYlan
论文研读研究方向:插画与动画叠加效果的运用与表现1.付博宇.动画前期设计中插画艺术的应用[J].明日风尚,2020(06):33-34.https://kns.cnki.net/KXReader/Detail?autoLogin=1&TIMESTAMP=637381423548572500&DBCODE=CJFD&TABLEName=CJFDLASN2020&FileName=MRFS202006
- SQL的各种连接查询
xieke90
UNION ALLUNION外连接内连接JOIN
一、内连接
概念:内连接就是使用比较运算符根据每个表共有的列的值匹配两个表中的行。
内连接(join 或者inner join )
SQL语法:
select * fron
- java编程思想--复用类
百合不是茶
java继承代理组合final类
复用类看着标题都不知道是什么,再加上java编程思想翻译的比价难懂,所以知道现在才看这本软件界的奇书
一:组合语法:就是将对象的引用放到新类中即可
代码:
package com.wj.reuse;
/**
*
* @author Administrator 组
- [开源与生态系统]国产CPU的生态系统
comsci
cpu
计算机要从娃娃抓起...而孩子最喜欢玩游戏....
要让国产CPU在国内市场形成自己的生态系统和产业链,国家和企业就不能够忘记游戏这个非常关键的环节....
投入一些资金和资源,人力和政策,让游
- JVM内存区域划分Eden Space、Survivor Space、Tenured Gen,Perm Gen解释
商人shang
jvm内存
jvm区域总体分两类,heap区和非heap区。heap区又分:Eden Space(伊甸园)、Survivor Space(幸存者区)、Tenured Gen(老年代-养老区)。 非heap区又分:Code Cache(代码缓存区)、Perm Gen(永久代)、Jvm Stack(java虚拟机栈)、Local Method Statck(本地方法栈)。
HotSpot虚拟机GC算法采用分代收
- 页面上调用 QQ
oloz
qq
<A href="tencent://message/?uin=707321921&Site=有事Q我&Menu=yes">
<img style="border:0px;" src=http://wpa.qq.com/pa?p=1:707321921:1></a>
- 一些问题
文强chu
问题
1.eclipse 导出 doc 出现“The Javadoc command does not exist.” javadoc command 选择 jdk/bin/javadoc.exe 2.tomcate 配置 web 项目 .....
SQL:3.mysql * 必须得放前面 否则 select&nbs
- 生活没有安全感
小桔子
生活孤独安全感
圈子好小,身边朋友没几个,交心的更是少之又少。在深圳,除了男朋友,没几个亲密的人。不知不觉男朋友成了唯一的依靠,毫不夸张的说,业余生活的全部。现在感情好,也很幸福的。但是说不准难免人心会变嘛,不发生什么大家都乐融融,发生什么很难处理。我想说如果不幸被分手(无论原因如何),生活难免变化很大,在深圳,我没交心的朋友。明
- php 基础语法
aichenglong
php 基本语法
1 .1 php变量必须以$开头
<?php
$a=” b”;
echo
?>
1 .2 php基本数据库类型 Integer float/double Boolean string
1 .3 复合数据类型 数组array和对象 object
1 .4 特殊数据类型 null 资源类型(resource) $co
- mybatis tools 配置详解
AILIKES
mybatis
MyBatis Generator中文文档
MyBatis Generator中文文档地址:
http://generator.sturgeon.mopaas.com/
该中文文档由于尽可能和原文内容一致,所以有些地方如果不熟悉,看中文版的文档的也会有一定的障碍,所以本章根据该中文文档以及实际应用,使用通俗的语言来讲解详细的配置。
本文使用Markdown进行编辑,但是博客显示效
- 继承与多态的探讨
百合不是茶
JAVA面向对象 继承 对象
继承 extends 多态
继承是面向对象最经常使用的特征之一:继承语法是通过继承发、基类的域和方法 //继承就是从现有的类中生成一个新的类,这个新类拥有现有类的所有extends是使用继承的关键字:
在A类中定义属性和方法;
class A{
//定义属性
int age;
//定义方法
public void go
- JS的undefined与null的实例
bijian1013
JavaScriptJavaScript
<form name="theform" id="theform">
</form>
<script language="javascript">
var a
alert(typeof(b)); //这里提示undefined
if(theform.datas
- TDD实践(一)
bijian1013
java敏捷TDD
一.TDD概述
TDD:测试驱动开发,它的基本思想就是在开发功能代码之前,先编写测试代码。也就是说在明确要开发某个功能后,首先思考如何对这个功能进行测试,并完成测试代码的编写,然后编写相关的代码满足这些测试用例。然后循环进行添加其他功能,直到完全部功能的开发。
- [Maven学习笔记十]Maven Profile与资源文件过滤器
bit1129
maven
什么是Maven Profile
Maven Profile的含义是针对编译打包环境和编译打包目的配置定制,可以在不同的环境上选择相应的配置,例如DB信息,可以根据是为开发环境编译打包,还是为生产环境编译打包,动态的选择正确的DB配置信息
Profile的激活机制
1.Profile可以手工激活,比如在Intellij Idea的Maven Project视图中可以选择一个P
- 【Hive八】Hive用户自定义生成表函数(UDTF)
bit1129
hive
1. 什么是UDTF
UDTF,是User Defined Table-Generating Functions,一眼看上去,貌似是用户自定义生成表函数,这个生成表不应该理解为生成了一个HQL Table, 貌似更应该理解为生成了类似关系表的二维行数据集
2. 如何实现UDTF
继承org.apache.hadoop.hive.ql.udf.generic
- tfs restful api 加auth 2.0认计
ronin47
目前思考如何给tfs的ngx-tfs api增加安全性。有如下两点:
一是基于客户端的ip设置。这个比较容易实现。
二是基于OAuth2.0认证,这个需要lua,实现起来相对于一来说,有些难度。
现在重点介绍第二种方法实现思路。
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGe
- jdk环境变量配置
byalias
javajdk
进行java开发,首先要安装jdk,安装了jdk后还要进行环境变量配置:
1、下载jdk(http://java.sun.com/javase/downloads/index.jsp),我下载的版本是:jdk-7u79-windows-x64.exe
2、安装jdk-7u79-windows-x64.exe
3、配置环境变量:右击"计算机"-->&quo
- 《代码大全》表驱动法-Table Driven Approach-2
bylijinnan
java
package com.ljn.base;
import java.io.BufferedReader;
import java.io.FileInputStream;
import java.io.InputStreamReader;
import java.util.ArrayList;
import java.util.Collections;
import java.uti
- SQL 数值四舍五入 小数点后保留2位
chicony
四舍五入
1.round() 函数是四舍五入用,第一个参数是我们要被操作的数据,第二个参数是设置我们四舍五入之后小数点后显示几位。
2.numeric 函数的2个参数,第一个表示数据长度,第二个参数表示小数点后位数。
例如:
select cast(round(12.5,2) as numeric(5,2))  
- c++运算符重载
CrazyMizzz
C++
一、加+,减-,乘*,除/ 的运算符重载
Rational operator*(const Rational &x) const{
return Rational(x.a * this->a);
}
在这里只写乘法的,加减除的写法类似
二、<<输出,>>输入的运算符重载
&nb
- hive DDL语法汇总
daizj
hive修改列DDL修改表
hive DDL语法汇总
1、对表重命名
hive> ALTER TABLE table_name RENAME TO new_table_name;
2、修改表备注
hive> ALTER TABLE table_name SET TBLPROPERTIES ('comment' = new_comm
- jbox使用说明
dcj3sjt126com
Web
参考网址:http://www.kudystudio.com/jbox/jbox-demo.html jBox v2.3 beta [
点击下载]
技术交流QQGroup:172543951 100521167
[2011-11-11] jBox v2.3 正式版
- [调整&修复] IE6下有iframe或页面有active、applet控件
- UISegmentedControl 开发笔记
dcj3sjt126com
// typedef NS_ENUM(NSInteger, UISegmentedControlStyle) {
// UISegmentedControlStylePlain, // large plain
&
- Slick生成表映射文件
ekian
scala
Scala添加SLICK进行数据库操作,需在sbt文件上添加slick-codegen包
"com.typesafe.slick" %% "slick-codegen" % slickVersion
因为我是连接SQL Server数据库,还需添加slick-extensions,jtds包
"com.typesa
- ES-TEST
gengzg
test
package com.MarkNum;
import java.io.IOException;
import java.util.Date;
import java.util.HashMap;
import java.util.Map;
import javax.servlet.ServletException;
import javax.servlet.annotation
- 为何外键不再推荐使用
hugh.wang
mysqlDB
表的关联,是一种逻辑关系,并不需要进行物理上的“硬关联”,而且你所期望的关联,其实只是其数据上存在一定的联系而已,而这种联系实际上是在设计之初就定义好的固有逻辑。
在业务代码中实现的时候,只要按照设计之初的这种固有关联逻辑来处理数据即可,并不需要在数据库层面进行“硬关联”,因为在数据库层面通过使用外键的方式进行“硬关联”,会带来很多额外的资源消耗来进行一致性和完整性校验,即使很多时候我们并不
- 领域驱动设计
julyflame
VODAO设计模式DTOpo
概念:
VO(View Object):视图对象,用于展示层,它的作用是把某个指定页面(或组件)的所有数据封装起来。
DTO(Data Transfer Object):数据传输对象,这个概念来源于J2EE的设计模式,原来的目的是为了EJB的分布式应用提供粗粒度的数据实体,以减少分布式调用的次数,从而提高分布式调用的性能和降低网络负载,但在这里,我泛指用于展示层与服务层之间的数据传输对
- 单例设计模式
hm4123660
javaSingleton单例设计模式懒汉式饿汉式
单例模式是一种常用的软件设计模式。在它的核心结构中只包含一个被称为单例类的特殊类。通过单例模式可以保证系统中一个类只有一个实例而且该实例易于外界访问,从而方便对实例个数的控制并节约系统源。如果希望在系统中某个类的对象只能存在一个,单例模式是最好的解决方案。
&nb
- logback
zhb8015
loglogback
一、logback的介绍
Logback是由log4j创始人设计的又一个开源日志组件。logback当前分成三个模块:logback-core,logback- classic和logback-access。logback-core是其它两个模块的基础模块。logback-classic是log4j的一个 改良版本。此外logback-class
- 整合Kafka到Spark Streaming——代码示例和挑战
Stark_Summer
sparkstormzookeeperPARALLELISMprocessing
作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。 期间, Michael还提到了将Kafka整合到 Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版
- spring-master-slave-commondao
王新春
DAOspringdataSourceslavemaster
互联网的web项目,都有个特点:请求的并发量高,其中请求最耗时的db操作,又是系统优化的重中之重。
为此,往往搭建 db的 一主多从库的 数据库架构。作为web的DAO层,要保证针对主库进行写操作,对多个从库进行读操作。当然在一些请求中,为了避免主从复制的延迟导致的数据不一致性,部分的读操作也要到主库上。(这种需求一般通过业务垂直分开,比如下单业务的代码所部署的机器,读去应该也要从主库读取数