- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- NumPy:科学计算的超能引擎[特殊字符](深入剖析+实战技巧)
码海漫游者8
numpy其他
文章目录为什么NumPy是Python科学计算的绝对核心?三维痛点直击ndarray:NumPy的核武器剖析内存布局揭秘(超级重要‼️)维度操作黑科技广播机制(Broadcasting)性能屠杀现场️高级技巧武装包️内存映射大文件爱因斯坦求和约定结构化数组真实世界应用场景图像处理机器学习数据预处理踩坑预警⚠️视图vs副本整数溢出性能压榨终极指南避免复制四法则终极加速方案你知道吗?就在你刷短视频的几
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- 【Python打卡Day48】随机张量与广播机制@浙大疏锦行
可能是猫猫人
Python打卡训练营内容python开发语言
在继续讲解模块消融前,先补充几个之前没提的基础概念尤其需要搞懂张量的维度、以及计算后的维度,这对于你未来理解复杂的网络至关重要一、随机张量的生成在深度学习中经常需要随机生成一些张量,比如权重的初始化,或者计算输入纬度经过模块后输出的维度,都可以用一个随机函数来实现需要的张量格式,而无需像之前一样必须加载一张真实的图片。“张量”概念它听起来可能有点抽象,但在数学和物理学(尤其是广义相对论、连续介质力
- python学习笔记(深度学习)
天水幼麟
python学习笔记
文章目录1、概述2、学习内容2.1、pytorch常见语法2.1.1、sum2.1.2、广播机制2.1.3、张量1、概述本篇博客用来记录,在深度学习过程中,常用的python语法内容2、学习内容2.1、pytorch常见语法2.1.1、sum在PyTorch中,torch.sum()是一个非常常用的函数,用于对张量(Tensor)进行求和操作。它的核心作用是沿着指定的维度对张量元素进行累加,支持灵
- python pytorch 张量 (Tensor)
Python虫
pythonpytorch人工智能
目录前言张量Tensor1.张量的基本概念2.创建张量从Python列表或NumPy数组生成特定形状的张量指定设备(CPU/GPU)指定数据类型(dtype)3.张量的属性4.张量的操作数学运算形状操作索引与切片广播机制(Broadcasting)5.自动微分(Autograd)6.与NumPy的互操作7.张量的存储8.其他方法1.`.item()`方法2.`.tolist()`方法`.numpy
- 6.11打卡
tt卡丁车
python
知识点回顾:1.随机张量的生成:torch.randn函数2.卷积和池化的计算公式(可以不掌握,会自动计算的)3.pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可importtorch#生成一个2x3的随机张量,元素来自标准正态分布a=torch.randn(2,3)print("随机张量a:\n",a)#
- python打卡day48
ZHPEN1
Python打卡python
随机函数与广播机制知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致一、随机张量生成#生成3x224x224的正态分布随机张量random_tensor=torch.randn(3,224,224)#生成5x5的0-1均匀分布随机张量uniform_te
- python打卡第48天
whyeekkk
python开发语言
知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致**torch.randn**:快速生成随机张量,适用于初始化和数据增强。卷积与池化:通过滑动窗口提取局部特征,公式决定输出尺寸。广播机制:自动扩展维度,简化代码逻辑,提升计算效率。1.随机张量的生成:t
- python第48天打卡
zdy1263574688
python打卡python开发语言
知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可1.随机张量生成:torch.randnimporttorch#生成标准正态分布的随机张量a=torch.randn(3)#1维张量(3个元素)b=torch
- python训练营打卡第48天
ppdkx
python打卡python开发语言
随机函数与广播机制知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可随机函数的应用示例:importnumpyasnp#1.均匀分布随机数:生成3x3矩阵,数值在[0,1)之间uniform_data=np.
- python打卡day48
纨妙
python开发语言
知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可随机张量的生成在深度学习中经常需要随机生成一些张量,比如权重的初始化,或者计算输入纬度经过模块后输出的维度,都可以用一个随机函数来实现需要的张量格式,而无需像
- DAY 48 随机函数与广播机制
MasterLLL0228
Python入门(坚持)人工智能
知识点回顾:随机张量的生成:torch.randn函数卷积和池化的计算公式(可以不掌握,会自动计算的)pytorch的广播机制:加法和乘法的广播机制ps:numpy运算也有类似的广播机制,基本一致作业:自己多借助ai举几个例子帮助自己理解即可importtorchimportnumpyasnp#================随机张量生成:torch.randn函数================
- Python_day48随机函数与广播机制
且慢.589
Python_60python开发语言
在继续讲解模块消融前,先补充几个之前没提的基础概念尤其需要搞懂张量的维度、以及计算后的维度,这对于你未来理解复杂的网络至关重要一、随机张量的生成在深度学习中经常需要随机生成一些张量,比如权重的初始化,或者计算输入纬度经过模块后输出的维度,都可以用一个随机函数来实现需要的张量格式,而无需像之前一样必须加载一张真实的图片。随机函数的种类很多,我们了解其中一种即可,毕竟目的主要就是生成,对分布要求不重要
- 【1】Pytorch基本知识
Clichong
深度学习:从入门到精通pythonpytorch机器学习
文章目录1.创建Tensor的基本操作2.索引与切片操作3.维度变换操作4.Broadcast广播机制5.拼接与拆分6.基本运算7.统计属性8.高级用法9.类型转换importtorch基本的数据类型如图所示1.创建Tensor的基本操作#Importfromnumpytorch.from_numpy#uninitializedtorch.emptytorch.Tensortorch.IntTen
- 【动手学深度学习】2.1. 数据操作
XiaoJ1234567
《动手学深度学习》深度学习人工智能
目录2.预备知识2.1.数据操作1)入门2)运算符3)广播机制(broadcastingmechanism)4)索引和切片5)节省内存6)转换为其他Python对象7)小结2.预备知识学习深度学习需掌握以下基础:数据处理:涵盖存储、操作与预处理,核心技能为高效管理表格数据(样本为行,属性为列)。线性代数:矩阵运算是处理多维数据的基础,重点理解基本原理与实现,如矩阵乘法与操作。优化与微积分:通过调整
- PyTorch 基础操作实践
wwangxubin
pytorch人工智能python
在深度学习框架PyTorch的使用中,理解和掌握一些基础操作至关重要,下面将对相关操作进行总结。广播机制广播机制允许不同形状的张量进行运算。例如,使用torch.arange函数创建张量a,其形状为(3,1),表示有3行1列;再创建张量b,形状为(1,2),即1行2列。当执行a+b操作时,PyTorch会依据广播机制自动扩展张量维度,使二者能够进行相加运算,最终输出符合预期的结果张量。这种机制在处
- redis协议与异步方式学习笔记
再出发2023
#redisredis学习笔记
目录1交互方式pipline2广播机制2.1概念演示2.2使用场景3redis事物3.1概念3.2使用场景3.3解决的问题3.3.1背景:多线程竞争出现问题3.3.2事务3.3.3安全性事务3.4两种类型的“事务”3.4.1watch...multiexec3.4.2lua脚本实现“原子”执行,重点掌握3.4.3watchmultiexec与lua脚本的区别4redis联通,通过hiredis压缩
- PYTHON基础-PYTHON的常见数据结构(应用总结)
奥德彪123
PYTHON基础python数据结构开发语言
在Python中,常见的数据结构包括NumPy数组(np)、PandasDataFrame(df)、字典(dict)、列表(list)、元组(tuple)、集合(set)等。下面是它们的简要总结及应用:1.NumPy数组(np)应用场景:主要用于高效的数值计算、科学计算、矩阵运算等。优点:提供高效的多维数组对象,支持广播机制。数值运算速度比Python原生的列表要快。可以方便地进行矩阵运算、线性代
- NumPy进阶:广播机制、高级索引与通用函数详解
古月฿
python入门numpypython人工智能机器学习
目录一、广播机制:不同形状数组间的运算1.概念2.广播规则3.实例二、高级索引:布尔索引与花式索引1.布尔索引(1)创建布尔索引(2)布尔索引的应用2.花式索引(1)一维数组的花式索引(2)二维数组的花式索引三、通用函数(ufuncs):向量化操作1.基本通用函数(1)数学函数(2)比较函数2.通用函数的优势四、随机数生成与统计函数1.随机数生成(1)生成均匀分布随机数(2)生成标准正态分布随机数
- PyTorch 中广播机制(Broadcasting)笔记
泽也AI
pytorch笔记深度学习
在PyTorch中存在广播(Broadcasting),广播是一种机制,用于自动扩展较小的张量以匹配较大张量的形状,从而使得它们能够进行元素级操作(如加法、减法、乘法等)。广播并不改变张量的实际数据,而是通过虚拟扩展来简化操作。目录广播机制的规则广播机制在张量乘法中的应用判断两个张量是否可以进行广播操作广播机制结合张量乘法例子广播机制的规则如果两个张量的维度数量不同,则将较小的那个张量的形状前面补
- python广播机制_pytorch 的广播机制
weixin_39647734
python广播机制
Torch,Numpy的BroadcastingMechanism(广播机制)Python的pytorch计算加速方法以pytorch为例进行介绍======================================================================(Formoreinformation,pleasegotoAnaconda与conda区别conda可以理解为一
- Pytorch中的广播机制
Stay Peace
Pytorch常用函数整理pytorch人工智能python
一、广播(broadcast)机制概述在PyTorch中,广播机制(Broadcast)允许对不同形状的张量执行逐元素操作,而无需显式地复制数据。这一机制使得编写代码更加简洁和高效。广播机制遵循一定的规则来扩展较小的张量,使其与较大的张量具有相同的形状二、广播机制规则:如果遵守以下规则,则两个张量tensor是可广播的:(1)每个张量tensor至少有一个维度;(2)遍历两个张量的所有维度时,从末
- pytorch中的广播机制
RACer_xuyang
python杂记pytorch人工智能python
一、什么是广播机制在线性代数中,矩阵的加减、对应元素乘除等操作要求形状一致。为方便代码编写,pytorch引入了广播机制,使得部分不同形状的矩阵、张量也可以进行这些运算。例如,某个张量的形状为3*1*4,另一个张量的形状为2*1*4*4。两者通过广播机制就可以相加减,最后能得到一个2*3*4*4形状的张量。但是,能够运用广播机制的两个张量有一定的限制,文章马上会介绍广播机制是如何工作的,然后就可以
- 解释PyTorch中的广播机制
子燕若水
cuda&深度学习环境pythonpytorch人工智能python
广播(Broadcasting)是PyTorch和其他数值计算库中的一个重要机制,它允许不同形状的张量进行算术运算。在您提供的例子中:广播机制的工作原理当两个形状不同的张量进行算术运算时,PyTorch会尝试将它们扩展到兼容的形状,而不需要实际复制数据。广播遵循以下规则:从尾部维度开始比较两个张量的形状如果对应维度相等或其中一个维度为1,则兼容如果一个张量的维度更少,则在前面添加尺寸为1的维度您例
- Android广播和阿里云消息推送服务
molong931
Android开发Kotlinandroid阿里云云计算
一、什么是广播?广播(Broadcast)在Android开发中是一个重要的概念,它类似于现实生活中的广播电台,通过“大喇叭”将消息传递给所有感兴趣的接收者。广播机制在Android系统中用于在不同组件之间传递信息,是一种非常灵活且强大的通信方式。1.广播的基本概念a.什么是广播接收者(BroadcastReceiver)广播接收者(BroadcastReceiver)是Android系统中用于接
- 【动手学深度学习】#1PyTorch基础操作
-一杯为品-
机器学习深度学习人工智能
主要参考学习资料:《动手学深度学习》阿斯顿·张等著【动手学深度学习PyTorch版】哔哩哔哩@跟李牧学AI目录1.1数据操作1.1.1入门1.1.2运算符1.1.3广播机制1.1.4索引和切片1.1.5节省内存1.1.6转换为其他Python对象1.2数据预处理1.2.1读取数据集1.2.2处理缺失值1.2.3转换为张量格式1.3线性代数1.3.1标量1.3.2向量1.3.3矩阵1.3.4张量1.
- (Pytorch)动手学深度学习:基础内容(持续更新)
孔表表uuu
神经网络深度学习pytorch人工智能
深度学习前言环境安装(Windows)安装anaconda使用conda或miniconda创建环境下载所需的包下载代码并执行(课件代码)关于线性代数内积(数量积、点乘)外积关于数据操作X.sum(0,keepdim=True)和X.sum(1,keepdim=True)广播机制(broadcast)Softmax函数和交叉熵损失函数Softmax函数交叉熵损失函数感知机多层感知机前言之前看吴恩达
- 简介安卓广播机制 Android Broadcast
某某鹦鹉
Andriodjavaandroid
目录前言——手机的“小动作”什么是广播?有了服务为什么还需要广播?常见的系统action广播有哪些成员?广播发送者广播的发送过程广播发送过程时序图广播的两种发送方式广播接受者广播接受者的注册过程广播注册过程时序图广播的两种注册方式前言——手机的“小动作”如电量低到一定程度会有低电量提醒,插入电源线时炫酷的动画,充满电时又会显示电量已充满,以及当手机开机时显示“欢迎使用中国移动/联通/电信”提醒,关
- Android四大组件系列8 Broadcast广播机制(下)
Big Skipper
Androidframework
概述广播(Broadcast)机制用于进程或线程间通信,广播分为广播发送和广播接收两个过程,其中广播接收者BroadcastReceiver是Android四大组件之一。BroadcastReceiver分为两类:静态广播接收者:通过AndroidManifest.xml的标签来声明的BroadcastReceiver动态广播接收者:通过AMS.registerReceiver()方式注册的Bro
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc