#include
#include
#include
#include
int main()
{
int Labels[4] = { 1, -1, -1, -1 };
cv::Mat LabelsMat(4, 1, CV_32SC1, Labels);
float TrainingData[4][2] = { {501., 10.}, {255., 10.}, {501., 255.}, {10., 501.} };
cv::Mat TrainingDataMat(4, 2, CV_32F, TrainingData);
auto SVM = cv::ml::SVM::create();
SVM->setType(cv::ml::SVM::C_SVC);
SVM->setKernel(cv::ml::SVM::LINEAR);
SVM->setTermCriteria(cv::TermCriteria(cv::TermCriteria::MAX_ITER, 100, 1e-6));
SVM->train(TrainingDataMat, cv::ml::ROW_SAMPLE, LabelsMat);
constexpr auto Width = 512, Height = 512;
cv::Mat Image = cv::Mat::zeros(Height, Width, CV_8UC3);
const cv::Vec3b Green(0, 255, 0), Blue(255, 0, 0);
for (int i = 0; i < Image.rows; ++i)
{
for (int j = 0; j < Image.cols; ++j)
{
cv::Mat SampleMat = (cv::Mat_<float>(1, 2) << j, i);
auto Response = static_cast<int>(SVM->predict(SampleMat));
if (Response == 1)
{
Image.at<cv::Vec3b>(i, j) = Green;
}
else if (Response == -1)
{
Image.at<cv::Vec3b>(i, j) = Blue;
}
}
}
auto Thinckness = -1;
cv::circle(Image, cv::Point(501, 10), 5, cv::Scalar(0, 0, 0), Thinckness);
cv::circle(Image, cv::Point(255, 10), 5, cv::Scalar(255, 255, 255), Thinckness);
cv::circle(Image, cv::Point(501, 255), 5, cv::Scalar(255, 255, 255), Thinckness);
cv::circle(Image, cv::Point(10, 501), 5, cv::Scalar(255, 255, 255), Thinckness);
Thinckness = 2;
auto SV = SVM->getUncompressedSupportVectors();
for (int i = 0; i < SV.rows; ++i)
{
auto v = SV.ptr<float>(i);
cv::circle(Image, cv::Point(static_cast<int>(v[0]), static_cast<int>(v[1])),
6, cv::Scalar(128, 128, 128), Thinckness);
}
cv::imwrite("result.png", Image);
cv::imshow("Result", Image);
cv::waitKey();
return 0;
}
效果图:
![[OpenCV3.4.3] SVM使用教程_第1张图片](http://img.e-com-net.com/image/info8/73f7da871b244cef9179b1c0de1edd85.jpg)