JUC源码解析(开篇)---Unsafe类源码解析

计划用一段时间阅读完JDK8中的JUC包下的所有源码,以这一篇作为开头。熟悉JUC的人肯定知道,在JUC中大量使用了sun.misc包中的Unsafe类中的CAS相关的方法,所以作为开篇,我们先阅读Unsafe类提供了那些方法给我们使用。

在JDK8以后,sun包就不再开源了,但是我们可以下载OpenJDK8的源码来进行分析,里面包含了sun包,下载地址:OpenJDK8源码地址

和以往一样,我们先看Unsafe类有那些属性以及有那些构造方法:

public final class Unsafe {

    private static native void registerNatives();
    static {
        registerNatives();
        sun.reflect.Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
    }

    private Unsafe() {}

    private static final Unsafe theUnsafe = new Unsafe();

    @CallerSensitive
    public static Unsafe getUnsafe() {
        Class caller = Reflection.getCallerClass();
        if (!VM.isSystemDomainLoader(caller.getClassLoader()))
            throw new SecurityException("Unsafe");
        return theUnsafe;
    }
}

可以看到Unsafe类使用了单例模式,获取Unsafe类实例可以使用getUnsafe()静态方法,但是在调用getUnsafe()方法时,需要确保调用getUnsafe()的类是引导类加载器加载时才可以获取到Unsafe类实例,否则抛出SecurityException异常。如果我们想确实想要在自己的类中使用Unsafe类,怎么办呢?一种方法是使用-Xbootclasspath/a参数,使自己的类被引导类加载器加载,另一种方法就会使用放射来获取了:

public class UnsafeUtil {
    public static Unsafe getUnsafe() {
        try {
            Field f = Unsafe.class.getDeclaredField("theUnsafe");
            f.setAccessible(true);
            return (Unsafe)f.get(null);
        } catch (NoSuchFieldException | IllegalAccessException e) {
            throw new SecurityException("get Unsafe failed");
        }
    }
}

接着我们来看看Unsafe类中提供了那些方法来供我们使用:

一、查看与设置对象值相关的操作:

public native int getInt(Object o, long offset);

通过给定的Java变量获取int类型的值。这里实际上是获取一个Java对象o中,获取偏移地址为offset的属性的值,此方法可以突破修饰符的抑制,也就是无视private、protected和default修饰符。类似的方法有getBoolean、getByte、getShort、getChar、getFloat、getDouble、getObject。

只有当offeet满足下面三个条件之一时,返回的值才是正确的,否则返回的结果是undefined.

  1. 当获取的值不是静态字段时,offset是通过Unsafe类的objectFieldOffset方法获得的。
  2. 当获取的值是静态字段时,o是通过Unsafe类的staticFieldBase,offset是通过staticFieldOffset获得的。
  3. 当o是数组对象时,offset的必须是:B+N*S的形式,其中N是数组有效的索引,B是通过Unsafe类的arrayBaseOffset方法获得,S是通过Unsafe类的arrayIndexScale方法获得;
public native void putInt(Object o, long offset, int x);

将int类型值x,储存到对象o偏移量offset的位置(这里两个参数的含义和getInt方法中的含义是一样的)。类似的方法还有putBoolean、putByte、putShort、putChar、putFloat、putDouble、putObject。

Demo1:演示getInt和putInt的用法:

public class UnsafeTest {
    static class Person {
        static int age = 20;
        int money = 20000;

        @Override
        public String toString() {
            return "【 " + "age : " + age + " , money: " + money + " 】";
        }
    }
    public static void main(String[] args) throws Exception{
        Unsafe unsafe = UnsafeUtil.getUnsafe();
        Person person = new Person();
        Field age = Person.class.getDeclaredField("age");
        Field money = person.getClass().getDeclaredField("money");
        System.out.println("Test getInt");
        System.out.println("==================================================================");
        System.out.println("person age: " + unsafe.getInt(unsafe.staticFieldBase(age), unsafe.staticFieldOffset(age)));
        System.out.println("person money: " + unsafe.getInt(person, unsafe.objectFieldOffset(money)));
        System.out.println("Test putInt");
        System.out.println("==================================================================");
        unsafe.putInt(unsafe.staticFieldBase(age), unsafe.staticFieldOffset(age), 30);
        unsafe.putInt(person, unsafe.objectFieldOffset(money), 500000);
        System.out.println(person);
    }

}

输出结果如下:

JUC源码解析(开篇)---Unsafe类源码解析_第1张图片

public native int getIntVolatile(Object o, long offset);

此方法和上面的getInt功能类似,不过附加了'volatile'加载语义,也就是强制从主存中获取属性值。类似的方法有getShortVolatile、getDoubleVolatile等等。这个方法要求被使用的属性被volatile修饰,否则功能和getInt方法相同。

public native void putIntVolatile(Object o, long offset, int x);

此方法和上面的putInt功能类似,不过附加了'volatile'加载语义,也就是设置值的时候强制(JMM会保证获得锁到释放锁之间所有对象的状态更新都会在锁被释放之后)更新到主存,从而保证这些变更对其他线程是可见的。类似的方法有putShortVolatile、putDoubleVolatile等等。这个方法要求被使用的属性被volatile修饰,否则功能和putInt方法相同。

public native void putOrderedInt(Object o, long offset, int x);

设置o对象中offset偏移地址offset对应的Int型field的值为指定值x。这是一个有序或者有延迟的putIntVolatile方法,并且不保证值的改变被其他线程立即看到。只有在field被volatile修饰并且期望被修改的时候使用才会生效。类似的方法有putOrderedObjectputOrderedLong

二、查询操作:

public native long staticFieldOffset(Field f);

返回给定的静态属性在它的类的存储分配中的位置(偏移地址)。

public native long objectFieldOffset(Field f);

返回给定的非静态属性在它的类的存储分配中的位置(偏移地址)。

public native Object staticFieldBase(Field f);

返回给定的静态属性的位置,配合staticFieldOffset方法使用。

public native boolean shouldBeInitialized(Class c);

检测给定的类是否需要初始化。通常需要使用在获取一个类的静态属性的时候(因为一个类如果没初始化,它的静态属性也不会初始化)。 此方法当且仅当ensureClassInitialized方法不生效的时候才返回false。

public native void ensureClassInitialized(Class c);

检测给定的类是否已经初始化。通常需要使用在获取一个类的静态属性的时候(因为一个类如果没初始化,它的静态属性也不会初始化)。

public native int arrayBaseOffset(Class arrayClass);

返回数组类型的第一个元素的偏移地址(基础偏移地址)。如果arrayIndexScale方法返回的比例因子不为0,你可以通过结合基础偏移地址和比例因子访问数组的所有元素。Unsafe中已经初始化了很多类似的常量如ARRAY_BOOLEAN_BASE_OFFSET等。

public native int arrayIndexScale(Class arrayClass);

返回数组类型的比例因子(其实就是数据中元素偏移地址的增量,因为数组中的元素的地址是连续的)。Unsafe中已经初始化了很多类似的常量如ARRAY_BOOLEAN_INDEX_SCALE等。

Demo2: 演示数组的操作:

public class UnsafeTest {
    static class ArrayDemo {
        int[] arr = {1,2,3,4,5,6,7,8,9};
    }
    public static void main(String[] args) {
        Unsafe unsafe = UnsafeUtil.getUnsafe();
        ArrayDemo arrayDemo = new ArrayDemo();
        System.out.println(unsafe.getInt(arrayDemo.arr, (long)Unsafe.ARRAY_INT_BASE_OFFSET + 2 * Unsafe.ARRAY_INT_INDEX_SCALE));
        unsafe.putInt(arrayDemo.arr, (long)Unsafe.ARRAY_INT_BASE_OFFSET + 2 * Unsafe.ARRAY_INT_INDEX_SCALE, 10);
        System.out.println(unsafe.getInt(arrayDemo.arr, (long)Unsafe.ARRAY_INT_BASE_OFFSET + 2 * Unsafe.ARRAY_INT_INDEX_SCALE));
    }
}

输出为:

三:定义类相关的方法:

public native Class defineClass(String name, byte[] b, int off, int len,
                                       ClassLoader loader,
                                       ProtectionDomain protectionDomain);

告诉JVM定义一个类,返回类实例,此方法会跳过JVM的所有安全检查。默认情况下,ClassLoader(类加载器)和ProtectionDomain(保护域)实例应该来源于调用者。

public native Class defineAnonymousClass(Class hostClass, byte[] data, Object[] cpPatches);

定义一个匿名类

public native Object allocateInstance(Class cls) throws InstantiationException;

通过Class对象创建一个类的实例,不需要调用其构造函数、初始化代码、JVM安全检查等等。同时,它抑制修饰符检测,也就是即使构造器是private修饰的也能通过此方法实例化。 如果类还没有初始化,将会执行类的初始化代码。

public class UnsafeTest {
    static class Demo {
        static {
            System.out.println("init");
        }
        int i;
        private Demo(int i) {this.i = i;}
    }
    public static void main(String[] args) throws InstantiationException{
        Unsafe unsafe = UnsafeUtil.getUnsafe();
        unsafe.allocateInstance(Demo.class);
        Demo demo = (Demo) unsafe.allocateInstance(Demo.class);
        System.out.println(demo.i);
    }

}

输出:

四、内存管理相关:

public native int addressSize();

获取本地指针的大小(单位是byte),通常值为4或者8。常量ADDRESS_SIZE就是调用此方法。

public native int pageSize();

获取本地内存的页数,此值为2的幂次方。

public native long allocateMemory(long bytes);

分配一块新的本地内存,通过bytes指定内存块的大小(单位是byte),返回新开辟的内存的地址。返回的内存块的内容不被初始化,那么它们一般会变成内存垃圾。生成的本机指针永远不会为零,并将对所有值类型进行对齐。可以通过freeMemory方法释放内存块,或者通过reallocateMemory方法调整内存块大小。bytes值为负数或者过大会抛出IllegalArgumentException异常,如果系统拒绝分配内存会抛出OutOfMemoryError异常。

public native long reallocateMemory(long address, long bytes);

通过指定的内存地址address重新调整本地内存块的大小,调整后的内存块大小通过bytes指定(单位为byte)。可以通过freeMemory方法释放内存块,或者通过reallocateMemory方法调整内存块大小。bytes值为负数或者过大会抛出IllegalArgumentException异常,如果系统拒绝分配内存会抛出OutOfMemoryError异常。

public native void setMemory(Object o, long offset, long bytes, byte value);

将给定内存块中的所有字节设置为固定值(通常是0)。内存块的地址由对象引用o和偏移地址共同决定,如果对象引用o为null,offset就是绝对地址。第三个参数就是内存块的大小,如果使用allocateMemory进行内存开辟的话,这里的值应该和allocateMemory的参数一致。value就是设置的固定值,一般为0。一般而言,o为null。

public void setMemory(long address, long bytes, byte value) {
        setMemory(null, address, bytes, value);
    }

setMemory的重载。

public native void copyMemory(Object srcBase, long srcOffset,
                              Object destBase, long destOffset,
                              long bytes);

内存拷贝,由srcBase与srcOffset来确定基地址,当srcBase为null时,offset就是绝对地址。

public void copyMemory(long srcAddress, long destAddress, long bytes) {
    copyMemory(null, srcAddress, null, destAddress, bytes);
    }

copyMemory的重载

public native void freeMemory(long address);

释放由allocateMemory于reallocateMemory申请的内存

五、线程与线程同步相关:

public native void monitorEnter(Object o);

锁定对象,必须通过monitorExit方法来解锁,可重入。

public native void monitorExit(Object o);

解锁

public native boolean tryMonitorEnter(Object o);

尝试获取对象锁,非阻塞。成功获取放回true,没有获取返回false.

public native void park(boolean isAbsolute, long time);

阻塞当前线程直到一个unpark方法出现(被调用)、一个用于unpark方法已经出现过(在此park方法调用之前已经调用过)、线程被中断或者time时间到期(也就是阻塞超时)。在time非零的情况下,如果isAbsolute为true,time是相对于新纪元之后的毫秒,否则time表示纳秒。这个方法执行时也可能不合理地返回(没有具体原因)。

public native void unpark(Object thread);

释放被park创建的在一个线程上的阻塞。这个方法也可以被使用来终止一个先前调用park导致的阻塞。这个操作是不安全的,因此必须保证线程是存活的(thread has not been destroyed)。从Java代码中判断一个线程是否存活的是显而易见的,但是从native代码中这机会是不可能自动完成的。

六、CAS相关:

    public final native boolean compareAndSwapObject(Object o, long offset,
                                                     Object expected,
                                                     Object x);

针对Object对象进行CAS操作。即是对应Java变量引用o,原子性地更新o中偏移地址为offset的属性的值为x,当且仅的偏移地址为offset的属性的当前值为expected才会更新成功返回true,否则返回false。

  • o:目标Java变量引用。
  • offset:目标Java变量中的目标属性的偏移地址。
  • expected:目标Java变量中的目标属性的期望的当前值。
  • x:目标Java变量中的目标属性的目标更新值。

类似的方法有compareAndSwapIntcompareAndSwapLong

    public final int getAndAddInt(Object o, long offset, int delta) {
        int v;
        do {
            v = getIntVolatile(o, offset);
        } while (!compareAndSwapInt(o, offset, v, v + delta));
        return v;
    }

原子的在原始值上增加delta,并返回旧值。类似的还有getAndAddLong。

    public final int getAndSetInt(Object o, long offset, int newValue) {
        int v;
        do {
            v = getIntVolatile(o, offset);
        } while (!compareAndSwapInt(o, offset, v, newValue));
        return v;
    }

原子的更新值为newValue,并放回旧值,类似的还有getAndSetLong与getAndSetObject.

七、内存屏障相关:

public native void loadFence();

在该方法之前的所有读操作,一定在load屏障之前执行完成。

public native void storeFence();

在该方法之前的所有写操作,一定在store屏障之前执行完成。

public native void fullFence();

在该方法之前的所有读写操作,一定在full屏障之前执行完成,这个内存屏障相当于上面两个(load屏障和store屏障)的合体功能。

最后附上Unsafe类的源码:

/*
 * Copyright (c) 2000, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.misc;

import java.security.*;
import java.lang.reflect.*;

import sun.reflect.CallerSensitive;
import sun.reflect.Reflection;


/**
 * A collection of methods for performing low-level, unsafe operations.
 * Although the class and all methods are public, use of this class is
 * limited because only trusted code can obtain instances of it.
 *
 * @author John R. Rose
 * @see #getUnsafe
 */

public final class Unsafe {

    private static native void registerNatives();
    static {
        registerNatives();
        sun.reflect.Reflection.registerMethodsToFilter(Unsafe.class, "getUnsafe");
    }

    private Unsafe() {}

    private static final Unsafe theUnsafe = new Unsafe();

    /**
     * Provides the caller with the capability of performing unsafe
     * operations.
     *
     * 

The returned Unsafe object should be carefully guarded * by the caller, since it can be used to read and write data at arbitrary * memory addresses. It must never be passed to untrusted code. * *

Most methods in this class are very low-level, and correspond to a * small number of hardware instructions (on typical machines). Compilers * are encouraged to optimize these methods accordingly. * *

Here is a suggested idiom for using unsafe operations: * *

     * class MyTrustedClass {
     *   private static final Unsafe unsafe = Unsafe.getUnsafe();
     *   ...
     *   private long myCountAddress = ...;
     *   public int getCount() { return unsafe.getByte(myCountAddress); }
     * }
     * 
* * (It may assist compilers to make the local variable be * final.) * * @exception SecurityException if a security manager exists and its * checkPropertiesAccess method doesn't allow * access to the system properties. */ @CallerSensitive public static Unsafe getUnsafe() { Class caller = Reflection.getCallerClass(); if (!VM.isSystemDomainLoader(caller.getClassLoader())) throw new SecurityException("Unsafe"); return theUnsafe; } /// peek and poke operations /// (compilers should optimize these to memory ops) // These work on object fields in the Java heap. // They will not work on elements of packed arrays. /** * Fetches a value from a given Java variable. * More specifically, fetches a field or array element within the given * object o at the given offset, or (if o is * null) from the memory address whose numerical value is the given * offset. *

* The results are undefined unless one of the following cases is true: *

    *
  • The offset was obtained from {@link #objectFieldOffset} on * the {@link java.lang.reflect.Field} of some Java field and the object * referred to by o is of a class compatible with that * field's class. * *
  • The offset and object reference o (either null or * non-null) were both obtained via {@link #staticFieldOffset} * and {@link #staticFieldBase} (respectively) from the * reflective {@link Field} representation of some Java field. * *
  • The object referred to by o is an array, and the offset * is an integer of the form B+N*S, where N is * a valid index into the array, and B and S are * the values obtained by {@link #arrayBaseOffset} and {@link * #arrayIndexScale} (respectively) from the array's class. The value * referred to is the Nth element of the array. * *
*

* If one of the above cases is true, the call references a specific Java * variable (field or array element). However, the results are undefined * if that variable is not in fact of the type returned by this method. *

* This method refers to a variable by means of two parameters, and so * it provides (in effect) a double-register addressing mode * for Java variables. When the object reference is null, this method * uses its offset as an absolute address. This is similar in operation * to methods such as {@link #getInt(long)}, which provide (in effect) a * single-register addressing mode for non-Java variables. * However, because Java variables may have a different layout in memory * from non-Java variables, programmers should not assume that these * two addressing modes are ever equivalent. Also, programmers should * remember that offsets from the double-register addressing mode cannot * be portably confused with longs used in the single-register addressing * mode. * * @param o Java heap object in which the variable resides, if any, else * null * @param offset indication of where the variable resides in a Java heap * object, if any, else a memory address locating the variable * statically * @return the value fetched from the indicated Java variable * @throws RuntimeException No defined exceptions are thrown, not even * {@link NullPointerException} */ public native int getInt(Object o, long offset); /** * Stores a value into a given Java variable. *

* The first two parameters are interpreted exactly as with * {@link #getInt(Object, long)} to refer to a specific * Java variable (field or array element). The given value * is stored into that variable. *

* The variable must be of the same type as the method * parameter x. * * @param o Java heap object in which the variable resides, if any, else * null * @param offset indication of where the variable resides in a Java heap * object, if any, else a memory address locating the variable * statically * @param x the value to store into the indicated Java variable * @throws RuntimeException No defined exceptions are thrown, not even * {@link NullPointerException} */ public native void putInt(Object o, long offset, int x); /** * Fetches a reference value from a given Java variable. * @see #getInt(Object, long) */ public native Object getObject(Object o, long offset); /** * Stores a reference value into a given Java variable. *

* Unless the reference x being stored is either null * or matches the field type, the results are undefined. * If the reference o is non-null, car marks or * other store barriers for that object (if the VM requires them) * are updated. * @see #putInt(Object, int, int) */ public native void putObject(Object o, long offset, Object x); /** @see #getInt(Object, long) */ public native boolean getBoolean(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putBoolean(Object o, long offset, boolean x); /** @see #getInt(Object, long) */ public native byte getByte(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putByte(Object o, long offset, byte x); /** @see #getInt(Object, long) */ public native short getShort(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putShort(Object o, long offset, short x); /** @see #getInt(Object, long) */ public native char getChar(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putChar(Object o, long offset, char x); /** @see #getInt(Object, long) */ public native long getLong(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putLong(Object o, long offset, long x); /** @see #getInt(Object, long) */ public native float getFloat(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putFloat(Object o, long offset, float x); /** @see #getInt(Object, long) */ public native double getDouble(Object o, long offset); /** @see #putInt(Object, int, int) */ public native void putDouble(Object o, long offset, double x); /** * This method, like all others with 32-bit offsets, was native * in a previous release but is now a wrapper which simply casts * the offset to a long value. It provides backward compatibility * with bytecodes compiled against 1.4. * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public int getInt(Object o, int offset) { return getInt(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putInt(Object o, int offset, int x) { putInt(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public Object getObject(Object o, int offset) { return getObject(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putObject(Object o, int offset, Object x) { putObject(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public boolean getBoolean(Object o, int offset) { return getBoolean(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putBoolean(Object o, int offset, boolean x) { putBoolean(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public byte getByte(Object o, int offset) { return getByte(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putByte(Object o, int offset, byte x) { putByte(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public short getShort(Object o, int offset) { return getShort(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putShort(Object o, int offset, short x) { putShort(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public char getChar(Object o, int offset) { return getChar(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putChar(Object o, int offset, char x) { putChar(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public long getLong(Object o, int offset) { return getLong(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putLong(Object o, int offset, long x) { putLong(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public float getFloat(Object o, int offset) { return getFloat(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putFloat(Object o, int offset, float x) { putFloat(o, (long)offset, x); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public double getDouble(Object o, int offset) { return getDouble(o, (long)offset); } /** * @deprecated As of 1.4.1, cast the 32-bit offset argument to a long. * See {@link #staticFieldOffset}. */ @Deprecated public void putDouble(Object o, int offset, double x) { putDouble(o, (long)offset, x); } // These work on values in the C heap. /** * Fetches a value from a given memory address. If the address is zero, or * does not point into a block obtained from {@link #allocateMemory}, the * results are undefined. * * @see #allocateMemory */ public native byte getByte(long address); /** * Stores a value into a given memory address. If the address is zero, or * does not point into a block obtained from {@link #allocateMemory}, the * results are undefined. * * @see #getByte(long) */ public native void putByte(long address, byte x); /** @see #getByte(long) */ public native short getShort(long address); /** @see #putByte(long, byte) */ public native void putShort(long address, short x); /** @see #getByte(long) */ public native char getChar(long address); /** @see #putByte(long, byte) */ public native void putChar(long address, char x); /** @see #getByte(long) */ public native int getInt(long address); /** @see #putByte(long, byte) */ public native void putInt(long address, int x); /** @see #getByte(long) */ public native long getLong(long address); /** @see #putByte(long, byte) */ public native void putLong(long address, long x); /** @see #getByte(long) */ public native float getFloat(long address); /** @see #putByte(long, byte) */ public native void putFloat(long address, float x); /** @see #getByte(long) */ public native double getDouble(long address); /** @see #putByte(long, byte) */ public native void putDouble(long address, double x); /** * Fetches a native pointer from a given memory address. If the address is * zero, or does not point into a block obtained from {@link * #allocateMemory}, the results are undefined. * *

If the native pointer is less than 64 bits wide, it is extended as * an unsigned number to a Java long. The pointer may be indexed by any * given byte offset, simply by adding that offset (as a simple integer) to * the long representing the pointer. The number of bytes actually read * from the target address maybe determined by consulting {@link * #addressSize}. * * @see #allocateMemory */ public native long getAddress(long address); /** * Stores a native pointer into a given memory address. If the address is * zero, or does not point into a block obtained from {@link * #allocateMemory}, the results are undefined. * *

The number of bytes actually written at the target address maybe * determined by consulting {@link #addressSize}. * * @see #getAddress(long) */ public native void putAddress(long address, long x); /// wrappers for malloc, realloc, free: /** * Allocates a new block of native memory, of the given size in bytes. The * contents of the memory are uninitialized; they will generally be * garbage. The resulting native pointer will never be zero, and will be * aligned for all value types. Dispose of this memory by calling {@link * #freeMemory}, or resize it with {@link #reallocateMemory}. * * @throws IllegalArgumentException if the size is negative or too large * for the native size_t type * * @throws OutOfMemoryError if the allocation is refused by the system * * @see #getByte(long) * @see #putByte(long, byte) */ public native long allocateMemory(long bytes); /** * Resizes a new block of native memory, to the given size in bytes. The * contents of the new block past the size of the old block are * uninitialized; they will generally be garbage. The resulting native * pointer will be zero if and only if the requested size is zero. The * resulting native pointer will be aligned for all value types. Dispose * of this memory by calling {@link #freeMemory}, or resize it with {@link * #reallocateMemory}. The address passed to this method may be null, in * which case an allocation will be performed. * * @throws IllegalArgumentException if the size is negative or too large * for the native size_t type * * @throws OutOfMemoryError if the allocation is refused by the system * * @see #allocateMemory */ public native long reallocateMemory(long address, long bytes); /** * Sets all bytes in a given block of memory to a fixed value * (usually zero). * *

This method determines a block's base address by means of two parameters, * and so it provides (in effect) a double-register addressing mode, * as discussed in {@link #getInt(Object,long)}. When the object reference is null, * the offset supplies an absolute base address. * *

The stores are in coherent (atomic) units of a size determined * by the address and length parameters. If the effective address and * length are all even modulo 8, the stores take place in 'long' units. * If the effective address and length are (resp.) even modulo 4 or 2, * the stores take place in units of 'int' or 'short'. * * @since 1.7 */ public native void setMemory(Object o, long offset, long bytes, byte value); /** * Sets all bytes in a given block of memory to a fixed value * (usually zero). This provides a single-register addressing mode, * as discussed in {@link #getInt(Object,long)}. * *

Equivalent to setMemory(null, address, bytes, value). */ public void setMemory(long address, long bytes, byte value) { setMemory(null, address, bytes, value); } /** * Sets all bytes in a given block of memory to a copy of another * block. * *

This method determines each block's base address by means of two parameters, * and so it provides (in effect) a double-register addressing mode, * as discussed in {@link #getInt(Object,long)}. When the object reference is null, * the offset supplies an absolute base address. * *

The transfers are in coherent (atomic) units of a size determined * by the address and length parameters. If the effective addresses and * length are all even modulo 8, the transfer takes place in 'long' units. * If the effective addresses and length are (resp.) even modulo 4 or 2, * the transfer takes place in units of 'int' or 'short'. * * @since 1.7 */ public native void copyMemory(Object srcBase, long srcOffset, Object destBase, long destOffset, long bytes); /** * Sets all bytes in a given block of memory to a copy of another * block. This provides a single-register addressing mode, * as discussed in {@link #getInt(Object,long)}. * * Equivalent to copyMemory(null, srcAddress, null, destAddress, bytes). */ public void copyMemory(long srcAddress, long destAddress, long bytes) { copyMemory(null, srcAddress, null, destAddress, bytes); } /** * Disposes of a block of native memory, as obtained from {@link * #allocateMemory} or {@link #reallocateMemory}. The address passed to * this method may be null, in which case no action is taken. * * @see #allocateMemory */ public native void freeMemory(long address); /// random queries /** * This constant differs from all results that will ever be returned from * {@link #staticFieldOffset}, {@link #objectFieldOffset}, * or {@link #arrayBaseOffset}. */ public static final int INVALID_FIELD_OFFSET = -1; /** * Returns the offset of a field, truncated to 32 bits. * This method is implemented as follows: *

     * public int fieldOffset(Field f) {
     *     if (Modifier.isStatic(f.getModifiers()))
     *         return (int) staticFieldOffset(f);
     *     else
     *         return (int) objectFieldOffset(f);
     * }
     * 
* @deprecated As of 1.4.1, use {@link #staticFieldOffset} for static * fields and {@link #objectFieldOffset} for non-static fields. */ @Deprecated public int fieldOffset(Field f) { if (Modifier.isStatic(f.getModifiers())) return (int) staticFieldOffset(f); else return (int) objectFieldOffset(f); } /** * Returns the base address for accessing some static field * in the given class. This method is implemented as follows: *
     * public Object staticFieldBase(Class c) {
     *     Field[] fields = c.getDeclaredFields();
     *     for (int i = 0; i < fields.length; i++) {
     *         if (Modifier.isStatic(fields[i].getModifiers())) {
     *             return staticFieldBase(fields[i]);
     *         }
     *     }
     *     return null;
     * }
     * 
* @deprecated As of 1.4.1, use {@link #staticFieldBase(Field)} * to obtain the base pertaining to a specific {@link Field}. * This method works only for JVMs which store all statics * for a given class in one place. */ @Deprecated public Object staticFieldBase(Class c) { Field[] fields = c.getDeclaredFields(); for (int i = 0; i < fields.length; i++) { if (Modifier.isStatic(fields[i].getModifiers())) { return staticFieldBase(fields[i]); } } return null; } /** * Report the location of a given field in the storage allocation of its * class. Do not expect to perform any sort of arithmetic on this offset; * it is just a cookie which is passed to the unsafe heap memory accessors. * *

Any given field will always have the same offset and base, and no * two distinct fields of the same class will ever have the same offset * and base. * *

As of 1.4.1, offsets for fields are represented as long values, * although the Sun JVM does not use the most significant 32 bits. * However, JVM implementations which store static fields at absolute * addresses can use long offsets and null base pointers to express * the field locations in a form usable by {@link #getInt(Object,long)}. * Therefore, code which will be ported to such JVMs on 64-bit platforms * must preserve all bits of static field offsets. * @see #getInt(Object, long) */ public native long staticFieldOffset(Field f); /** * Report the location of a given static field, in conjunction with {@link * #staticFieldBase}. *

Do not expect to perform any sort of arithmetic on this offset; * it is just a cookie which is passed to the unsafe heap memory accessors. * *

Any given field will always have the same offset, and no two distinct * fields of the same class will ever have the same offset. * *

As of 1.4.1, offsets for fields are represented as long values, * although the Sun JVM does not use the most significant 32 bits. * It is hard to imagine a JVM technology which needs more than * a few bits to encode an offset within a non-array object, * However, for consistency with other methods in this class, * this method reports its result as a long value. * @see #getInt(Object, long) */ public native long objectFieldOffset(Field f); /** * Report the location of a given static field, in conjunction with {@link * #staticFieldOffset}. *

Fetch the base "Object", if any, with which static fields of the * given class can be accessed via methods like {@link #getInt(Object, * long)}. This value may be null. This value may refer to an object * which is a "cookie", not guaranteed to be a real Object, and it should * not be used in any way except as argument to the get and put routines in * this class. */ public native Object staticFieldBase(Field f); /** * Detect if the given class may need to be initialized. This is often * needed in conjunction with obtaining the static field base of a * class. * @return false only if a call to {@code ensureClassInitialized} would have no effect */ public native boolean shouldBeInitialized(Class c); /** * Ensure the given class has been initialized. This is often * needed in conjunction with obtaining the static field base of a * class. */ public native void ensureClassInitialized(Class c); /** * Report the offset of the first element in the storage allocation of a * given array class. If {@link #arrayIndexScale} returns a non-zero value * for the same class, you may use that scale factor, together with this * base offset, to form new offsets to access elements of arrays of the * given class. * * @see #getInt(Object, long) * @see #putInt(Object, long, int) */ public native int arrayBaseOffset(Class arrayClass); /** The value of {@code arrayBaseOffset(boolean[].class)} */ public static final int ARRAY_BOOLEAN_BASE_OFFSET = theUnsafe.arrayBaseOffset(boolean[].class); /** The value of {@code arrayBaseOffset(byte[].class)} */ public static final int ARRAY_BYTE_BASE_OFFSET = theUnsafe.arrayBaseOffset(byte[].class); /** The value of {@code arrayBaseOffset(short[].class)} */ public static final int ARRAY_SHORT_BASE_OFFSET = theUnsafe.arrayBaseOffset(short[].class); /** The value of {@code arrayBaseOffset(char[].class)} */ public static final int ARRAY_CHAR_BASE_OFFSET = theUnsafe.arrayBaseOffset(char[].class); /** The value of {@code arrayBaseOffset(int[].class)} */ public static final int ARRAY_INT_BASE_OFFSET = theUnsafe.arrayBaseOffset(int[].class); /** The value of {@code arrayBaseOffset(long[].class)} */ public static final int ARRAY_LONG_BASE_OFFSET = theUnsafe.arrayBaseOffset(long[].class); /** The value of {@code arrayBaseOffset(float[].class)} */ public static final int ARRAY_FLOAT_BASE_OFFSET = theUnsafe.arrayBaseOffset(float[].class); /** The value of {@code arrayBaseOffset(double[].class)} */ public static final int ARRAY_DOUBLE_BASE_OFFSET = theUnsafe.arrayBaseOffset(double[].class); /** The value of {@code arrayBaseOffset(Object[].class)} */ public static final int ARRAY_OBJECT_BASE_OFFSET = theUnsafe.arrayBaseOffset(Object[].class); /** * Report the scale factor for addressing elements in the storage * allocation of a given array class. However, arrays of "narrow" types * will generally not work properly with accessors like {@link * #getByte(Object, int)}, so the scale factor for such classes is reported * as zero. * * @see #arrayBaseOffset * @see #getInt(Object, long) * @see #putInt(Object, long, int) */ public native int arrayIndexScale(Class arrayClass); /** The value of {@code arrayIndexScale(boolean[].class)} */ public static final int ARRAY_BOOLEAN_INDEX_SCALE = theUnsafe.arrayIndexScale(boolean[].class); /** The value of {@code arrayIndexScale(byte[].class)} */ public static final int ARRAY_BYTE_INDEX_SCALE = theUnsafe.arrayIndexScale(byte[].class); /** The value of {@code arrayIndexScale(short[].class)} */ public static final int ARRAY_SHORT_INDEX_SCALE = theUnsafe.arrayIndexScale(short[].class); /** The value of {@code arrayIndexScale(char[].class)} */ public static final int ARRAY_CHAR_INDEX_SCALE = theUnsafe.arrayIndexScale(char[].class); /** The value of {@code arrayIndexScale(int[].class)} */ public static final int ARRAY_INT_INDEX_SCALE = theUnsafe.arrayIndexScale(int[].class); /** The value of {@code arrayIndexScale(long[].class)} */ public static final int ARRAY_LONG_INDEX_SCALE = theUnsafe.arrayIndexScale(long[].class); /** The value of {@code arrayIndexScale(float[].class)} */ public static final int ARRAY_FLOAT_INDEX_SCALE = theUnsafe.arrayIndexScale(float[].class); /** The value of {@code arrayIndexScale(double[].class)} */ public static final int ARRAY_DOUBLE_INDEX_SCALE = theUnsafe.arrayIndexScale(double[].class); /** The value of {@code arrayIndexScale(Object[].class)} */ public static final int ARRAY_OBJECT_INDEX_SCALE = theUnsafe.arrayIndexScale(Object[].class); /** * Report the size in bytes of a native pointer, as stored via {@link * #putAddress}. This value will be either 4 or 8. Note that the sizes of * other primitive types (as stored in native memory blocks) is determined * fully by their information content. */ public native int addressSize(); /** The value of {@code addressSize()} */ public static final int ADDRESS_SIZE = theUnsafe.addressSize(); /** * Report the size in bytes of a native memory page (whatever that is). * This value will always be a power of two. */ public native int pageSize(); /// random trusted operations from JNI: /** * Tell the VM to define a class, without security checks. By default, the * class loader and protection domain come from the caller's class. */ public native Class defineClass(String name, byte[] b, int off, int len, ClassLoader loader, ProtectionDomain protectionDomain); /** * Define a class but do not make it known to the class loader or system dictionary. *

* For each CP entry, the corresponding CP patch must either be null or have * the a format that matches its tag: *

    *
  • Integer, Long, Float, Double: the corresponding wrapper object type from java.lang *
  • Utf8: a string (must have suitable syntax if used as signature or name) *
  • Class: any java.lang.Class object *
  • String: any object (not just a java.lang.String) *
  • InterfaceMethodRef: (NYI) a method handle to invoke on that call site's arguments *
* @params hostClass context for linkage, access control, protection domain, and class loader * @params data bytes of a class file * @params cpPatches where non-null entries exist, they replace corresponding CP entries in data */ public native Class defineAnonymousClass(Class hostClass, byte[] data, Object[] cpPatches); /** Allocate an instance but do not run any constructor. Initializes the class if it has not yet been. */ public native Object allocateInstance(Class cls) throws InstantiationException; /** Lock the object. It must get unlocked via {@link #monitorExit}. */ public native void monitorEnter(Object o); /** * Unlock the object. It must have been locked via {@link * #monitorEnter}. */ public native void monitorExit(Object o); /** * Tries to lock the object. Returns true or false to indicate * whether the lock succeeded. If it did, the object must be * unlocked via {@link #monitorExit}. */ public native boolean tryMonitorEnter(Object o); /** Throw the exception without telling the verifier. */ public native void throwException(Throwable ee); /** * Atomically update Java variable to x if it is currently * holding expected. * @return true if successful */ public final native boolean compareAndSwapObject(Object o, long offset, Object expected, Object x); /** * Atomically update Java variable to x if it is currently * holding expected. * @return true if successful */ public final native boolean compareAndSwapInt(Object o, long offset, int expected, int x); /** * Atomically update Java variable to x if it is currently * holding expected. * @return true if successful */ public final native boolean compareAndSwapLong(Object o, long offset, long expected, long x); /** * Fetches a reference value from a given Java variable, with volatile * load semantics. Otherwise identical to {@link #getObject(Object, long)} */ public native Object getObjectVolatile(Object o, long offset); /** * Stores a reference value into a given Java variable, with * volatile store semantics. Otherwise identical to {@link #putObject(Object, long, Object)} */ public native void putObjectVolatile(Object o, long offset, Object x); /** Volatile version of {@link #getInt(Object, long)} */ public native int getIntVolatile(Object o, long offset); /** Volatile version of {@link #putInt(Object, long, int)} */ public native void putIntVolatile(Object o, long offset, int x); /** Volatile version of {@link #getBoolean(Object, long)} */ public native boolean getBooleanVolatile(Object o, long offset); /** Volatile version of {@link #putBoolean(Object, long, boolean)} */ public native void putBooleanVolatile(Object o, long offset, boolean x); /** Volatile version of {@link #getByte(Object, long)} */ public native byte getByteVolatile(Object o, long offset); /** Volatile version of {@link #putByte(Object, long, byte)} */ public native void putByteVolatile(Object o, long offset, byte x); /** Volatile version of {@link #getShort(Object, long)} */ public native short getShortVolatile(Object o, long offset); /** Volatile version of {@link #putShort(Object, long, short)} */ public native void putShortVolatile(Object o, long offset, short x); /** Volatile version of {@link #getChar(Object, long)} */ public native char getCharVolatile(Object o, long offset); /** Volatile version of {@link #putChar(Object, long, char)} */ public native void putCharVolatile(Object o, long offset, char x); /** Volatile version of {@link #getLong(Object, long)} */ public native long getLongVolatile(Object o, long offset); /** Volatile version of {@link #putLong(Object, long, long)} */ public native void putLongVolatile(Object o, long offset, long x); /** Volatile version of {@link #getFloat(Object, long)} */ public native float getFloatVolatile(Object o, long offset); /** Volatile version of {@link #putFloat(Object, long, float)} */ public native void putFloatVolatile(Object o, long offset, float x); /** Volatile version of {@link #getDouble(Object, long)} */ public native double getDoubleVolatile(Object o, long offset); /** Volatile version of {@link #putDouble(Object, long, double)} */ public native void putDoubleVolatile(Object o, long offset, double x); /** * Version of {@link #putObjectVolatile(Object, long, Object)} * that does not guarantee immediate visibility of the store to * other threads. This method is generally only useful if the * underlying field is a Java volatile (or if an array cell, one * that is otherwise only accessed using volatile accesses). */ public native void putOrderedObject(Object o, long offset, Object x); /** Ordered/Lazy version of {@link #putIntVolatile(Object, long, int)} */ public native void putOrderedInt(Object o, long offset, int x); /** Ordered/Lazy version of {@link #putLongVolatile(Object, long, long)} */ public native void putOrderedLong(Object o, long offset, long x); /** * Unblock the given thread blocked on park, or, if it is * not blocked, cause the subsequent call to park not to * block. Note: this operation is "unsafe" solely because the * caller must somehow ensure that the thread has not been * destroyed. Nothing special is usually required to ensure this * when called from Java (in which there will ordinarily be a live * reference to the thread) but this is not nearly-automatically * so when calling from native code. * @param thread the thread to unpark. * */ public native void unpark(Object thread); /** * Block current thread, returning when a balancing * unpark occurs, or a balancing unpark has * already occurred, or the thread is interrupted, or, if not * absolute and time is not zero, the given time nanoseconds have * elapsed, or if absolute, the given deadline in milliseconds * since Epoch has passed, or spuriously (i.e., returning for no * "reason"). Note: This operation is in the Unsafe class only * because unpark is, so it would be strange to place it * elsewhere. */ public native void park(boolean isAbsolute, long time); /** * Gets the load average in the system run queue assigned * to the available processors averaged over various periods of time. * This method retrieves the given nelem samples and * assigns to the elements of the given loadavg array. * The system imposes a maximum of 3 samples, representing * averages over the last 1, 5, and 15 minutes, respectively. * * @params loadavg an array of double of size nelems * @params nelems the number of samples to be retrieved and * must be 1 to 3. * * @return the number of samples actually retrieved; or -1 * if the load average is unobtainable. */ public native int getLoadAverage(double[] loadavg, int nelems); // The following contain CAS-based Java implementations used on // platforms not supporting native instructions /** * Atomically adds the given value to the current value of a field * or array element within the given object o * at the given offset. * * @param o object/array to update the field/element in * @param offset field/element offset * @param delta the value to add * @return the previous value * @since 1.8 */ public final int getAndAddInt(Object o, long offset, int delta) { int v; do { v = getIntVolatile(o, offset); } while (!compareAndSwapInt(o, offset, v, v + delta)); return v; } /** * Atomically adds the given value to the current value of a field * or array element within the given object o * at the given offset. * * @param o object/array to update the field/element in * @param offset field/element offset * @param delta the value to add * @return the previous value * @since 1.8 */ public final long getAndAddLong(Object o, long offset, long delta) { long v; do { v = getLongVolatile(o, offset); } while (!compareAndSwapLong(o, offset, v, v + delta)); return v; } /** * Atomically exchanges the given value with the current value of * a field or array element within the given object o * at the given offset. * * @param o object/array to update the field/element in * @param offset field/element offset * @param newValue new value * @return the previous value * @since 1.8 */ public final int getAndSetInt(Object o, long offset, int newValue) { int v; do { v = getIntVolatile(o, offset); } while (!compareAndSwapInt(o, offset, v, newValue)); return v; } /** * Atomically exchanges the given value with the current value of * a field or array element within the given object o * at the given offset. * * @param o object/array to update the field/element in * @param offset field/element offset * @param newValue new value * @return the previous value * @since 1.8 */ public final long getAndSetLong(Object o, long offset, long newValue) { long v; do { v = getLongVolatile(o, offset); } while (!compareAndSwapLong(o, offset, v, newValue)); return v; } /** * Atomically exchanges the given reference value with the current * reference value of a field or array element within the given * object o at the given offset. * * @param o object/array to update the field/element in * @param offset field/element offset * @param newValue new value * @return the previous value * @since 1.8 */ public final Object getAndSetObject(Object o, long offset, Object newValue) { Object v; do { v = getObjectVolatile(o, offset); } while (!compareAndSwapObject(o, offset, v, newValue)); return v; } /** * Ensures lack of reordering of loads before the fence * with loads or stores after the fence. * @since 1.8 */ public native void loadFence(); /** * Ensures lack of reordering of stores before the fence * with loads or stores after the fence. * @since 1.8 */ public native void storeFence(); /** * Ensures lack of reordering of loads or stores before the fence * with loads or stores after the fence. * @since 1.8 */ public native void fullFence(); /** * Throws IllegalAccessError; for use by the VM. * @since 1.8 */ private static void throwIllegalAccessError() { throw new IllegalAccessError(); } }

参考:JAVA中神奇的双刃剑--Unsafe

你可能感兴趣的:(JUC源码解析)