- 企业级RAG的数据方案选择 - 向量数据库、图数据库和知识图谱
南七小僧
AI技术产品经理网站开发人工智能数据库知识图谱人工智能
如何为企业RAG选择合适的数据存储方式摘要:本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。要点概要:矢量数据库高效存储数据,但缺乏上下文和关联信息。图数据库优先考虑数据点之间的关系,受益于关系结构。知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,
- 基于知识图谱技术增强大模型RAG知识库应用效果
罗伯特之技术屋
知识图谱人工智能
【摘要】本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-AugmentedGeneration,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。1.引言随着人工智能技术的加速演进,AI大模型如雨后春笋般纷纷涌现,
- 音视频面试题集锦第 1 期
关键帧-Keyframe
音视频面试题集锦音视频面试
想要学习和提升音视频技术的朋友,快来加入我们的【音视频技术社群】,加入后你就能:1)下载30+个开箱即用的「音视频及渲染Demo源代码」2)下载包含500+知识条目的完整版「音视频知识图谱」3)下载包含200+题目的完整版「音视频面试题集锦」4)技术和职业发展咨询100%得到回答5)获得简历优化建议和大厂内推现在加入,送你一张20元优惠券:点击领取优惠券前些时间,我在知识星球上创建了一个音视频技术
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- Python, C ++开发全国研学基地查询与管理APP
Geeker-2025
pythonc++
以下是基于Python和C++开发全国研学基地查询与管理APP的技术方案,结合高性能数据处理、混合语言开发及教育行业合规性要求:---###**一、核心功能架构**```mermaidgraphTDA[用户端APP]-->B{API网关}C[管理端平台]-->BB-->D[Python业务微服务]D-->E[C++数据处理引擎]D-->F[时空数据库集群]E-->G[智能推荐系统]F-->H[可视
- 因果推断推荐系统工具箱 - PRS(二)
processor4d
文章名称【WSDM-2021】【UniversityofVirginia-Google】Non-ClicksMeanIrrelevant?PropensityRatioScoringAsaCorrection核心要点上一节讲解了在unbiasL2R的场景中,基于pairwise比较的损失函数的IPS的方法存在与真实评估指标偏离的问题,这一节讲解如何环节这一问题,并学习模型参数。方法细节问题引入作者
- !LangChain文档加载器的接口设计与多种格式解析源码深度解析(77)
LangChain文档加载器的接口设计与多种格式解析源码深度解析一、文档加载器概述1.1文档加载器的作用与定位LangChain文档加载器(DocumentLoaders)是整个框架中负责数据输入的核心组件,其主要作用是从不同来源(本地文件、网络资源、数据库等)读取原始文档,并将其转换为LangChain可处理的Document对象格式。在实际应用中,无论是构建问答系统、知识图谱,还是进行文本摘要
- 深入理解 Top-K 问题:高效的 nlogk 算法及 C++ 实现
在日常开发和算法面试中,Top-K问题是一类非常常见的场景。例如"找出数组中前K个最大的元素"、"统计热门搜索词"、"推荐系统中的热门商品"等,都可以归结为Top-K问题。本文将详细讲解如何用时间复杂度为O(nlogk)的高效算法解决这类问题,并通过C++代码实现具体方案。一、什么是Top-K问题?Top-K问题可以抽象为:从含有n个元素的集合中,找出其中最大(或最小)的k个元素。常见的应用场景包
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 双塔模型(Two-Tower Model)推荐系统实践
双塔模型双塔模型(Two-TowerModel)是一种常用的推荐系统或搜索排序模型架构,由两个独立的神经网络(即“双塔”)组成,分别处理用户和物品的特征,最后通过相似度计算(如点积、余弦相似度)得到匹配分数。Rust因其高性能和安全性,适合实现此类模型。双塔模型的定义双塔模型(Dual-TowerModel)是一种深度学习架构,由两个独立的神经网络塔(Tower)组成,分别处理不同的输入数据,最后
- 大语言模型 LLM 通过 Excel 知识库 增强日志分析,根因分析能力的技术方案(1):总体介绍
shiter
人工智能系统解决方案与技术架构语言模型excel人工智能
文章大纲1.核心目标2.系统总体架构3.GoogleCloud端到端方案(含无RAG&RAG双模式)3.1无RAG:Function-Calling查表模式3.2RAG:托管式向量检索4.开源轻量级方案5.数字孪生联合验证(实验性)6.知识图谱增强(Neo4j)7.监控与持续优化(CometLLM)8.实施路线图(4~10周)9.典型案例速览10.一键复现仓库11.参考文献1.核心目标让LLM在“
- 【速成速通】嵌入式软硬件学习路径:从 0 到实战的知识图谱
Hy行者勇哥
#硬件知识学习物联网嵌入式硬件嵌入式实时数据库
核心摘要本路径以"实战用驱动学习"为原则,24周即可掌握嵌入式开发核心能力。通过"硬件基础→编程入门→外设实战→系统进阶→项目落地"五阶段递进,覆盖80%常用知识点,规避90%冗余内容,适合零基础小白快速上手。一、硬件基础层(1-4周):看懂电路,玩转元件1.电子元件通识(1周)核心元件:电阻(色环读数)、电容(极性判断)、二极管(正向导通)、三极管(开关作用)、LED(限流电阻计算)模块认知:电
- 嵌入式软硬件及软件平台开发入门指南:知识、工具与 AI 辅助
Hy行者勇哥
#硬件知识人工智能单片机嵌入式硬件
摘要本文专为零基础小白整理嵌入式软硬件及软件平台开发的核心知识点、必备工具,以及借助AI大模型快速入门的方法。内容涵盖硬件设计、软件开发、平台搭建的关键知识框架,推荐小白友好型工具,并通过PlantUML知识图谱和工具图谱可视化呈现,帮助小白清晰掌握学习路径,快速进入开发者角色。一、核心知识点框架(一)嵌入式硬件开发核心知识电路基础必备概念:电压、电流、电阻、电容的基本作用;串联/并联电路特性;欧
- KNN 算法进阶:从基础到优化的深度解析
二向箔reverse
人工智能机器学习
在机器学习的广袤领域中,K-近邻算法(K-NearestNeighbors,KNN)以其简洁直观的理念,宛如一颗璀璨的明星,照亮了无数初学者踏入机器学习大门的道路。自1951年由EvelynFix和JosephHodges创立,并经ThomasCover进一步完善以来,KNN算法凭借其独特的魅力,在数据挖掘、推荐系统、物联网等众多领域发挥着中流砥柱的作用,成为了监督学习算法家族中不可或缺的一员。一
- 【AI大模型】企业图谱解决方案:知识图谱、元数据图谱与分析图谱的区别与应用,看到就是赚到!!
前言随着企业数据量的爆炸式增长,超过80%的企业数据仍然是非结构化的,传统关系型数据库在处理复杂互联数据方面显得力不从心。本文深入探讨了企业中三种主要的图谱类型:知识图谱、元数据图谱和分析图谱,详细分析了它们的特点、应用场景和最佳实践,并澄清了关于图谱解决方案的常见误解。引言:图谱技术的崛起在人工智能时代,企业面临着前所未有的数据挑战。超过80%的企业数据仍然是非结构化的,传统关系型数据库在捕捉组
- 生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代
GEO优化助手
生成式引擎优化GEO优化AI搜索优化搜索引擎人工智能GEO生成式引擎优化
生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代一、技术范式重构:从关键词匹配到语义共生在人工智能技术驱动下,搜索引擎正经历从"信息检索工具"向"认知决策伙伴"的范式转变。生成式引擎优化(GEO)作为连接内容生产与AI理解的桥梁,通过三大技术支柱重塑搜索生态:检索增强生成(RAG)架构夸克平台采用自研Qwen推理模型构建向量数据库,实现分钟级知识图谱更新。医疗设备企业通过API接口同步实时
- 动态知识图谱在GEO优化中的核心价值与实施路径
GEO优化助手
GEO优化AI搜索优化生成式引擎优化知识图谱人工智能ai搜索引擎
动态知识图谱在GEO优化中的核心价值与实施路径一、动态知识图谱的定义与技术背景1.定义与特性动态知识图谱(DynamicKnowledgeGraph,DKG)是一种基于图的语义网络,通过实体-关系-属性的三元组结构描述现实世界中的知识,并具备以下核心特性:实时性:通过API接口、爬虫技术或用户行为日志实时捕获最新数据(如产品参数更新、用户评价、市场趋势)。自适应性:利用机器学习算法(如图神经网络、
- 生成式引擎优化(GEO):重构 AI 时代的品牌流量入口
jz20092020
人工智能
一、GEO的核心价值与技术演进生成式引擎优化(GenerativeEngineOptimization,GEO)是应对AI搜索革命的核心策略,其目标是让品牌内容被ChatGPT、文心一言等生成式AI优先引用并整合到回答中。与传统SEO不同,GEO通过动态知识图谱、多模态内容适配、权威信号强化三大技术路径,实现从“链接排名”到“语义主权”的跨越。动态知识图谱的智能基座作用动态知识图谱通过实时整合企业
- 基于Android studio的城市景区旅游导航与推荐系统
QQ242219979
androidstudio旅游android
随着时代的发展和进步,越来越多人选择在空闲的时间出去旅游,人们要前往陌生的城市旅游,就不可避免地会出现迷路,不知道景点等情况,基于此,旅游app变成了游客的热门选择,兼顾导航与热门景点推荐,方便游客查询路线的同时也能为游客推荐一些热门的旅游景点,让游客更加方便快捷的找到想去的地方,有一个更加舒适的旅游体验。苏州作为热门旅游城市,其中姑苏区经典密集,但是路线复杂,人流密集,游客来到这里,不知道该去哪
- 语义网络技术解析:AI人工智能的知识表示方法
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能ai
语义网络技术解析:AI人工智能的知识表示方法关键词:语义网络、知识表示、人工智能、节点与边、本体论、推理引擎、知识图谱摘要:在人工智能的世界里,“让机器理解知识"是一个核心难题。如果把AI比作一个正在上学的孩子,那么"知识表示"就是教孩子如何整理书包里的课本和文具——既要知道每个物品是什么,还要明白它们之间的关系(比如"数学书"和"铅笔"都属于"学习用品”)。语义网络(SemanticNetwor
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- 计算机毕业设计之SpringBoot+Vue.js知识图谱中药可视化系统
计算机毕业设计大全
需求用户信息管理:新用户注册,已有账号再登录,用户注销,用户信息修改。2.中药材信息查询:用户可以点击系统给出的或按编码或按药性等条件进行查询,或通过搜索框自主输入想要查询的信息进行中药材查询。3.中药材资讯社区:进入后首页顶部有推荐咨询可供浏览,依靠基于内容的推荐算法(即基于用户与标的物的相关信息以及用户对标的物的操作行为来构成推荐算法模型为用户提供推荐服务)实现实时咨询推荐。推荐底下是最新审核
- (附源码)计算机毕业设计SSM健康饮食推荐系统
学姐计算机毕设程序
mybatisjavamysql
(附源码)计算机毕业设计SSM健康饮食推荐系统项目运行环境配置:Jdk1.8+Tomcat7.0+Mysql+HBuilderX(Webstorm也行)+Eclispe(IntelliJIDEA,Eclispe,MyEclispe,Sts都支持)。项目技术:SSM+mybatis+Maven+Vue等等组成,B/S模式+Maven管理等等。环境需要1.运行环境:最好是javajdk1.8,我们在这
- 星图云开发者平台新功能速递|AI大模型赋能开发应用效率提升三倍!
星图易码
人工智能
还在为技术文档检索耗费数小时?还在重复编写基础CRUD代码?星图云开发者平台发布「三大AI核心能力」,将自然语言大模型深度融入开发全流程。这不是替代开发者,而是让每位工程师拥有超级辅助——从此复杂算法封装、接口调试、业务逻辑设计效率全面跃升。一、智能化多源知识问答技术当开发者以自然语言形式提出技术问题时,多模态自然语言处理(NLP)模型与知识图谱融合技术,实现三重突破:1.跨域知识检索:联动平台专
- matlab学习分析
空空star
matlab学习开发语言
【代码】Matlab鸟瞰图函数-预置视角配置加载-`transformImage`函数实现透视变换-效果对比展示适用场景:自动驾驶道路感知、监控视频视角转换等需要俯视视角分析的场景##️知识图谱```mermaidgraphLRA["图像鸟瞰图转换"]-->B["输入准备"]A-->C["视角变换"]B-->D["读取图像(imread)"]B-->E["显示原图(imshow)"]C-->F["
- 音视频面试题集锦第 2 期
想要学习和提升音视频技术的朋友,快来加入我们的【音视频技术社群】,加入后你就能:1)下载30+个开箱即用的「音视频及渲染Demo源代码」2)下载包含500+知识条目的完整版「音视频知识图谱」3)下载包含200+题目的完整版「音视频面试题集锦」4)技术和职业发展咨询100%得到回答5)获得简历优化建议和大厂内推现在加入,送你一张20元优惠券:点击领取优惠券前些时间,我在知识星球上创建了一个音视频技术
- 如何面试AI产品经理职位?
从美团AI产品经理岗位的面试题来看,该岗位要求技术深度、产品思维和伦理意识的高度融合。以下是系统分析及准备建议:一、AI产品经理核心职责技术桥梁:将业务需求转化为技术方案(如LLM优化、推荐系统设计)全链路管理:主导AI产品从需求分析、模型选型、效果验证到上线的全流程风险控制:识别并解决模型偏见、幻觉、数据安全等伦理风险性能优化:平衡算法效果与工程约束(如推理速度、资源消耗)价值量化:设计评估体系
- Python全站爬取与知识图谱构建实战:从数据采集到语义建模的全流程指南
Python爬虫项目
python知识图谱easyui信息可视化开发语言爬虫人工智能
引言随着信息爆炸时代的到来,如何系统化地获取并结构化网站上的海量信息,成为数据科学和人工智能领域的重要课题。知识图谱作为将结构化数据和语义联系可视化的强大工具,正广泛应用于搜索引擎、推荐系统、智能问答等领域。本文将系统讲解如何用Python实现对目标网站的全站爬取,并结合自然语言处理技术,自动抽取实体与关系,最终构建成知识图谱。全流程涵盖爬取策略、信息抽取、知识融合及可视化,配合丰富的代码示例,助
- 使用 QLExpress 构建灵活可扩展的业务规则引擎
目录一、什么是QLExpress?二、推荐系统中的规则脚本应用1场景描述2推荐规则脚本(QLExpress)3系统实现4执行结果5推荐系统应用建议三、风控系统中的规则判定1场景描述2风控规则脚本(QLExpress)3系统实现4执行结果5风控系统应用建议四、设计建议在大型系统中,规则引擎的存在使业务逻辑从代码中解耦出来,使得系统具备更高的灵活性与可维护性。阿里巴巴开源的QLExpress正是一款轻
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比