import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
from sklearn.datasets import fetch_california_housing
housing = fetch_california_housing()
from sklearn.model_selection import train_test_split
x_train_all, x_test, y_train_all, y_test = train_test_split(
housing.data, housing.target, random_state = 7)
x_train, x_valid, y_train, y_valid, = train_test_split(
x_train_all, y_train_all, random_state = 11)
print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.transform(x_valid)
x_test_scaked = scaler.transform(x_test)
自定义损失函数
def customized_mse(y_true,y_pred):
return tf.reduce_mean(tf.square(y_pred - y_true))
model = keras.models.Sequential([
keras.layers.Dense(30, activation='relu',
input_shape=x_train.shape[1: ]),
keras.layers.Dense(1),
])
model.summary()
model.compile(loss = customized_mse, optimizer="sgd",
metrics = ["mean_squared_error"])
callbacks = [keras.callbacks.EarlyStopping(
patience=5, min_delta=1e-2)]
history = model.fit(x_train_scaled, y_train,
validation_data = (x_valid_scaled, y_valid),
epochs = 100,
callbacks = callbacks)