这篇文章主要参考 A survey on Image Data Augmentation for Deep Learning, 总结了常用的传统扩增方法及其应用时的注意事项。这里的传统方法指不包括基于深度学习(比如 GAN)等新的扩增方法。
另外需要注意的是,虽然对于不同的任务,比如对于分类,检测任务,不同的任务在采用某一个具体的扩增方法的时候会有所不同,比如对于检测任务需要考虑对 bounding box 进行相应的操作,但是这里仅仅从扩增方法的角度来说是没有区别的。
最后, 数据扩增的具体方法非常多,而且除了各个训练框架提供的方法之外还有很多第三方库,这里仅仅是整理了一些比较常见的扩增方法。更多的扩增方法可以参考第三方库 imgaug, albumentations 等。
数据扩增是对数据进行扩充的方法的总称。数据扩增可以增加训练集的样本,可以有效缓解模型过拟合的情况,也可以给模型带来的更强的泛化能力。怎么理解呢?
数据扩增的目的就是使得训练数据尽可能的接近测试数据,从而提高预测精度。另外数据扩增可以迫使网络学习到更鲁棒性的特征,从而使模型拥有更强的泛化能力,比如对图像进行一定程度的遮挡。
通常在进行数据扩增操作的时候应该保持图像原本的标签不变,比如对于猫狗分类任务,rotate 或者 flip ,一般对标签是没有影响的,但是对于手写数字识别,比如 9 和 6 就不适用了。当然如果能相应的修改标签,对于网络训练来说是有益的,但是这将又是一个麻烦的费时费力的过程。所以通常来说,数据扩增应该在不改变标签的前提下进行。
基于几何变换的方法可以消除测试集和训练集的位置差异,尺度差异,视角差异等。
水平翻转通常比竖直翻转更通用,但是对于字符识别任务,通常不适用。
旋转的角度关系到标签是否安全,比如对于 MNIST,1° 到 20° 或者 -1° 到 -20° 之间的轻微旋转是没有问题的,如果更大幅度的旋转可能会影响到标签。
平移(向左、向右、向上或向下移动)图像是一个非常有用的变换,可以避免数据中的位置偏差。例如,如果数据集中的所有图像都是居中的(这在人脸识别数据集中很常见),这就要求模型也要在完全居中的图像上进行测试。当原始图像被平移后造成的空白区域,可以用一个常数值填充,如 0 或 255 ,也可以用随机或高斯噪声填充。这种填充可以保留图像增强后的空间尺寸。
添加噪声一般可以应对噪声干扰,或者成像异常等特殊情况。
增加高斯噪声是比较常用的操作,增加噪声可以帮助 CNNs 学习到更 robust feature。
对于训练数据中存在的位置偏差,几何变换是非常好的解决方案。有许多潜在的偏差来源,可以将训练数据与测试数据的分布分开。如果存在位置偏差,例如在人脸识别数据集中,每个人脸都是完全居中的,几何变换是一个很好的解决方案。除了克服位置偏差的强大能力之外,几何变换也很有用,因为它们很容易实现。有很多成像处理库,可以让水平翻转和旋转等操作轻松上手。几何变换的一些缺点包括额外的内存、变换计算成本和额外的训练时间。一些几何变换,如平移或随机裁剪等几何变换必须手动观察,以确保它们没有改变图像的标签。最后,在所涉及的许多应用领域,如医学图像分析,训练数据与测试数据之间的偏差比位置偏差和平移偏差更复杂。因此,几何变换也不一定总是能带来明显的效果。
颜色空间变换一般可以消除光照、亮度及色彩差异。
颜色空间变换也可以从图像编辑应用程序中得到。图像中每个RGB颜色通道中的像素值被聚合成一个颜色直方图。这个直方图可以被操纵,应用滤镜来改变图像的颜色空间特性。
颜色空间变化可以帮助客服光照差异,但是如果任务对颜色的依赖性很强,比如要分辨油漆,水和血液,可能红色是一个非常重要的信息,如果进行不当的颜色空间变换,可能适得其反。
Mixing images 被证明对小的数据集作用更明显。
这种方法主要在目标检测中使用的比较多,效果比较好。
思想和 dropout 类似,不同的是 Random erasing 是在输入数据空间进行,而非是在网络结构中。这种方法也可以看着是在模拟遮挡的情况,以保证网络关注整个图像,而不是只关注其中的一个子集。
通常 earsing 的区域直接填充随机值效果更好。使用的时候需要注意是否标签安全,可能需要人为的加入一些限制,以保证标签的正确性。