leetcode:使用STL:基于红黑树的TreeSet

352. 数据流的不相交区间

给定一个数据流,输入一组非负整数a1, a2, …, an, …, 对截止到当前的不相交区间进行汇总。
思路:
利用TreeSet数据结构,将不相交区间Interval存储在TreeSet中。TreeSet底层使用红黑树实现,可以用log(n)的代价实现元素查找。每次执行addNum操作时,利用TreeSet找出插入元素val的左近邻元素floor(start值不大于val的最大Interval),以及右近邻元素higher(start值严格大于val的最小Interval),然后根据floor, val, higher之间的关系决定是否对三者进行合并。

/**
 * Definition for an interval.
 * public class Interval {
 *     int start;
 *     int end;
 *     Interval() { start = 0; end = 0; }
 *     Interval(int s, int e) { start = s; end = e; }
 * }
 */
public class SummaryRanges {

    /** Initialize your data structure here. */

    private TreeSet intervalSet; 

    public SummaryRanges() {
        intervalSet = new TreeSet(new Comparator() {
            public int compare(Interval a, Interval b) {
                return a.start - b.start;
            }
        });
    }

    public void addNum(int val) {
        Interval valInterval = new Interval(val, val);
        Interval floor = intervalSet.floor(valInterval);
        if (floor != null) {
            if (floor.end >= val) {
                return;
            } else if (floor.end + 1 == val) {
                valInterval.start = floor.start;
                intervalSet.remove(floor);
            }
        }
        Interval higher = intervalSet.higher(valInterval);
        if (higher != null && higher.start == val + 1) {
            valInterval.end = higher.end;
            intervalSet.remove(higher);
        }
        intervalSet.add(valInterval);
    }

    public List getIntervals() {
        return Arrays.asList(intervalSet.toArray(new Interval[0]));
    }
}

/**
 * Your SummaryRanges object will be instantiated and called as such:
 * SummaryRanges obj = new SummaryRanges();
 * obj.addNum(val);
 * List param_2 = obj.getIntervals();
 */

你可能感兴趣的:(leetcode)