Tf1-dense-network
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np ,pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
1.15.0
sys.version_info(major=3, minor=7, micro=6, releaselevel='final', serial=0)
matplotlib 3.1.3
numpy 1.18.1
pandas 1.0.1
sklearn 0.22.1
tensorflow 1.15.0
tensorflow.python.keras.api._v1.keras 2.2.4-tf
fashion_mnist = keras.datasets.fashion_mnist
(x_train_all, y_train_all),(x_test, y_test) = fashion_mnist.load_data()
x_valid, x_train = x_train_all[:5000],x_train_all[5000:]
y_valid, y_train = y_train_all[:5000],y_train_all[5000:]
print(x_valid.shape, y_valid.shape)
print(x_train.shape, y_train.shape)
print(x_test.shape, y_test.shape)
(5000, 28, 28) (5000,)
(55000, 28, 28) (55000,)
(10000, 28, 28) (10000,)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(
x_train.astype(np.float32).reshape(-1, 1)).reshape(-1, 28 * 28)
x_valid_scaled = scaler.transform(
x_valid.astype(np.float32).reshape(-1, 1)).reshape(-1, 28 * 28)
x_test_scaled = scaler.transform(
x_test.astype(np.float32).reshape(-1, 1)).reshape(-1, 28 * 28)
hidden_units = [100, 100]
class_num = 10
x = tf.placeholder(tf.float32, [None, 28*28])
y = tf.placeholder(tf.int64, [None])
input_for_next_layer = x
for hidden_unit in hidden_units:
input_for_next_layer = tf.layers.dense(input_for_next_layer,
hidden_unit,
activation=tf.nn.relu)
logits = tf.layers.dense(input_for_next_layer,class_num)
loss = tf.losses.sparse_softmax_cross_entropy(labels = y,
logits = logits)
prediction = tf.argmax(logits, 1)
correct_prediction = tf.equal(prediction, y)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float64))
train_op = tf.train.AdamOptimizer(1e-3).minimize(loss)
WARNING:tensorflow:From :19: dense (from tensorflow.python.layers.core) is deprecated and will be removed in a future version.
Instructions for updating:
Use keras.layers.Dense instead.
WARNING:tensorflow:From E:\Anaconda\anaconda\envs\tensorflow1\lib\site-packages\tensorflow_core\python\layers\core.py:187: Layer.apply (from tensorflow.python.keras.engine.base_layer) is deprecated and will be removed in a future version.
Instructions for updating:
Please use `layer.__call__` method instead.
WARNING:tensorflow:From E:\Anaconda\anaconda\envs\tensorflow1\lib\site-packages\tensorflow_core\python\ops\losses\losses_impl.py:121: where (from tensorflow.python.ops.array_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.where in 2.0, which has the same broadcast rule as np.where
print(x)
print(logits)
Tensor("Placeholder:0", shape=(?, 784), dtype=float32)
Tensor("dense_2/BiasAdd:0", shape=(?, 10), dtype=float32)
init = tf.global_variables_initializer()
batch_size = 20
epochs = 10
train_steps_per_epoch = x_train.shape[0] // batch_size
valid_steps = x_valid.shape[0] // batch_size
def eval_with_sess(sess, x, y, accuracy, images, labels, batch_size):
eval_steps = images.shape[0] // batch_size
eavl_accuracies = []
for step in range(eval_steps):
batch_data = images[step * batch_size:(step+1) * batch_size]
batch_label = labels[step * batch_size:(step+1) * batch_size]
accuracy_val = sess.run(accuracy,
feed_dict ={
x:batch_data,
y:batch_label
})
eavl_accuracies.append(accuracy_val)
return np.mean(eavl_accuracies)
with tf.Session() as sess:
sess.run(init)
for epoch in range(epochs):
for step in range(train_steps_per_epoch):
batch_data = x_train_scaled[
step * batch_size:(step+1) * batch_size]
batch_label = y_train[
step * batch_size:(step+1) * batch_size]
loss_val, accuracy_val, _ =sess.run([loss, accuracy, train_op],
feed_dict = {
x:batch_data,
y:batch_label
})
print('\r[Train] epoch: %d, step:%d, loss: %3.5f, accuracy: %2.2f'
% (epoch, step, loss_val, accuracy_val), end="")
valid_accuracy = eval_with_sess(sess, x, y, accuracy,
x_valid_scaled, y_valid, batch_size)
print("\t[Valid] acc: %2.2f" % (valid_accuracy))
[Train] epoch: 0, step:2749, loss: 0.25137, accuracy: 0.90 [Valid] acc: 0.86
[Train] epoch: 1, step:2749, loss: 0.24022, accuracy: 0.90 [Valid] acc: 0.87
[Train] epoch: 2, step:2749, loss: 0.20952, accuracy: 0.90 [Valid] acc: 0.88
[Train] epoch: 3, step:2749, loss: 0.16674, accuracy: 0.90 [Valid] acc: 0.88
[Train] epoch: 4, step:2680, loss: 0.65273, accuracy: 0.85[Train] epoch: 4, step:2749, loss: 0.13731, accuracy: 0.90 [Valid] acc: 0.88
[Train] epoch: 5, step:2749, loss: 0.22307, accuracy: 0.95 [Valid] acc: 0.88
[Train] epoch: 6, step:2749, loss: 0.16866, accuracy: 0.95 [Valid] acc: 0.88
[Train] epoch: 7, step:2749, loss: 0.15522, accuracy: 0.95 [Valid] acc: 0.88
[Train] epoch: 8, step:2749, loss: 0.10591, accuracy: 0.95 [Valid] acc: 0.88
[Train] epoch: 9, step:2749, loss: 0.14000, accuracy: 0.90 [Valid] acc: 0.88