Tensorflow2.0中导数的求解
import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np ,pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
2.0.0
sys.version_info(major=3, minor=7, micro=6, releaselevel='final', serial=0)
matplotlib 3.1.3
numpy 1.18.1
pandas 1.0.0
sklearn 0.22.1
tensorflow 2.0.0
tensorflow_core.keras 2.2.4-tf
def f(x):
return 3. * x ** 2 + 2. * x - 1
def approximae_derivative(f, x, eps=1e-3):
return(f(x+eps)-f(x-eps))/(2. * eps)
print(approximae_derivative(f, 1.))
7.999999999999119
def g(x1, x2):
return(x1 + 5) * (x2 ** 2)
def approximate_gradient(g, x1, x2, eps=1e-3):
dg_x1 = approximae_derivative(lambda x :g(x, x2), x1, eps)
dg_x2 = approximae_derivative(lambda x :g(x1, x), x2, eps)
return dg_x1, dg_x2
print(approximate_gradient(g, 2., 3.))
(8.999999999993236, 41.999999999994486)
x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
z = g(x1, x2)
with tf.GradientTape() as tape:
z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
print(dz_x1)
tf.Tensor(9.0, shape=(), dtype=float32)
x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
z = g(x1, x2)
with tf.GradientTape(persistent = True) as tape:
z = g(x1, x2)
dz_x1 = tape.gradient(z, x1)
dz_x2 = tape.gradient(z, x2)
print(dz_x1,dz_x2)
del tape
tf.Tensor(9.0, shape=(), dtype=float32) tf.Tensor(42.0, shape=(), dtype=float32)
x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape() as tape:
z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1,x2])
print(dz_x1x2)
[, ]
x1 = tf.constant(2.0)
x2 = tf.constant(3.0)
with tf.GradientTape() as tape:
z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1,x2])
print(dz_x1x2)
[None, None]
x1 = tf.constant(2.0)
x2 = tf.constant(3.0)
with tf.GradientTape() as tape:
tape.watch(x1)
tape.watch(x2)
z = g(x1, x2)
dz_x1x2 = tape.gradient(z, [x1,x2])
print(dz_x1x2)
[, ]
x = tf.Variable(5.0)
with tf.GradientTape() as tape:
z1 = 3 * x
z2 = x ** 2
tape.gradient([z1, z2], x)
x1 = tf.Variable(2.0)
x2 = tf.Variable(3.0)
with tf.GradientTape(persistent=True) as outer_tape:
with tf.GradientTape(persistent=True) as inner_tape:
z = g(x1, x2)
inner_grads = inner_tape.gradient(z, [x1, x2])
outer_grads = [outer_tape.gradient(inner_grad, [x1, x2])
for inner_grad in inner_grads]
print(outer_grads)
del inner_tape
del outer_tape
[[None, ], [, ]]
learning_rate = 0.1
x = tf.Variable(0.0)
for _ in range(100):
with tf.GradientTape() as tape:
z = f(x)
dz_dx = tape.gradient(z, x)
x.assign_sub(learning_rate * dz_dx)
print(x)
learning_rate = 0.1
x = tf.Variable(0.0)
optimizer = keras.optimizers.SGD(lr = learning_rate)
for _ in range(100):
with tf.GradientTape() as tape:
z = f(x)
dz_dx = tape.gradient(z, x)
optimizer.apply_gradients([(dz_dx, x)])
print(x)