import matplotlib as mpl
import matplotlib.pyplot as plt
%matplotlib inline
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import time
import tensorflow as tf
from tensorflow import keras
print(tf.__version__)
print(sys.version_info)
for module in mpl, np ,pd, sklearn, tf, keras:
print(module.__name__, module.__version__)
2.0.0
sys.version_info(major=3, minor=7, micro=6, releaselevel='final', serial=0)
matplotlib 3.1.3
numpy 1.18.1
pandas 1.0.0
sklearn 0.22.1
tensorflow 2.0.0
tensorflow_core.keras 2.2.4-tf
t = tf.constant([[1, 2, 3], [4, 5, 6]])
print(t)
print(t[:,1:])
print(t[:,1])
t_1 = tf.constant([[1., 2., 3.], [4., 5., 6.]])
print(t_1)
print(t_1[:,1:])
print(t_1[:,1])
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[2 3]
[5 6]], shape=(2, 2), dtype=int32)
tf.Tensor([2 5], shape=(2,), dtype=int32)
tf.Tensor(
[[1. 2. 3.]
[4. 5. 6.]], shape=(2, 3), dtype=float32)
tf.Tensor(
[[2. 3.]
[5. 6.]], shape=(2, 2), dtype=float32)
tf.Tensor([2. 5.], shape=(2,), dtype=float32)
print(t+10)
print(tf.square(t))
print(t @ tf.transpose(t))
tf.Tensor(
[[11 12 13]
[14 15 16]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[ 1 4 9]
[16 25 36]], shape=(2, 3), dtype=int32)
tf.Tensor(
[[14 32]
[32 77]], shape=(2, 2), dtype=int32)
print(t.numpy())
print(np.square(t))
np_t = np.array([[1, 2 , 3], [4, 5, 6]])
print(tf.constant(np_t))
[[1 2 3]
[4 5 6]]
[[ 1 4 9]
[16 25 36]]
tf.Tensor(
[[1 2 3]
[4 5 6]], shape=(2, 3), dtype=int32)
t = tf.constant(2.63554)
print(t.numpy())
print(t.shape)
2.63554
()
t = tf.constant("cafe")
print(t)
print(tf.strings.length(t))
print(tf.strings.length(t, unit="UTF8_CHAR"))
print(tf.strings.unicode_decode(t, "utf8"))
tf.Tensor(b'cafe', shape=(), dtype=string)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor(4, shape=(), dtype=int32)
tf.Tensor([ 99 97 102 101], shape=(4,), dtype=int32)
t = tf.constant(["cafe", "coffee","咖啡" ])
print(tf.strings.length(t, unit="UTF8_CHAR"))
r = tf.strings.unicode_decode(t, "utf8")
print(r)
tf.Tensor([4 6 2], shape=(3,), dtype=int32)
r = tf.ragged.constant([[11,22],[21, 22 ,33],[1],[4,5,6,9,3]])
print(r)
print(r[1])
print(r[1:3])
tf.Tensor([21 22 33], shape=(3,), dtype=int32)
r2 = tf.ragged.constant([[51,52],[],[77]])
print(tf.concat([r, r2], axis = 0))
r3 = tf.ragged.constant([[1,2],[2, 22 ,33],[],[4,9,3]])
print(tf.concat([r, r3], axis = 1))
print(r.to_tensor())
tf.Tensor(
[[11 22 0 0 0]
[21 22 33 0 0]
[ 1 0 0 0 0]
[ 4 5 6 9 3]], shape=(4, 5), dtype=int32)
s = tf.SparseTensor(indices = [[0,1], [1, 0], [2, 3]],
values = [1., 2., 3.],
dense_shape = [3, 4])
print(s)
print(tf.sparse.to_dense(s))
SparseTensor(indices=tf.Tensor(
[[0 1]
[1 0]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 1. 0. 0.]
[2. 0. 0. 0.]
[0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
s2 = s * 2.0
print(s2)
try:
s3 = s + 1
except TypeError as ex:
print(ex)
s4 = tf.constant([[10., 20.],
[30.,40.],
[50., 60.],
[70., 80.]])
print(tf.sparse.sparse_dense_matmul(s, s4))
SparseTensor(indices=tf.Tensor(
[[0 1]
[1 0]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([2. 4. 6.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
unsupported operand type(s) for +: 'SparseTensor' and 'int'
tf.Tensor(
[[ 30. 40.]
[ 20. 40.]
[210. 240.]], shape=(3, 2), dtype=float32)
s5 = tf.SparseTensor(indices = [[0, 2], [0, 1], [2, 3]],
values = [1., 2., 3.],
dense_shape = [3, 4])
print(s5)
s6 = tf.sparse.reorder(s5)
print(tf.sparse.to_dense(s6))
SparseTensor(indices=tf.Tensor(
[[0 2]
[0 1]
[2 3]], shape=(3, 2), dtype=int64), values=tf.Tensor([1. 2. 3.], shape=(3,), dtype=float32), dense_shape=tf.Tensor([3 4], shape=(2,), dtype=int64))
tf.Tensor(
[[0. 2. 1. 0.]
[0. 0. 0. 0.]
[0. 0. 0. 3.]], shape=(3, 4), dtype=float32)
v = tf.Variable([[1., 2., 3.], [4., 5., 6.,]])
print(v)
print(v.value())
print(v.numpy())
tf.Tensor(
[[1. 2. 3.]
[4. 5. 6.]], shape=(2, 3), dtype=float32)
[[1. 2. 3.]
[4. 5. 6.]]
v.assign(2*v)
print(v.numpy())
v[0, 1].assign(42)
print(v.numpy())
v[1].assign([7. ,8., 9.])
print(v.numpy())
[[ 2. 4. 6.]
[ 8. 10. 12.]]
[[ 2. 42. 6.]
[ 8. 10. 12.]]
[[ 2. 42. 6.]
[ 7. 8. 9.]]
try:
v[1]=[7., 8., 9.]
except TypeError as ex:
print(ex)
'ResourceVariable' object does not support item assignment