用SVM识别手写体案例

from sklearn import datasets
from sklearn import svm
iris=datasets.load_iris()
digits=datasets.load_digits()
#选择SVM模型
svm_classifier=svm.SVC(gamma=0.0001,C=100)
#手动划分训练集,测试集
n_test=100#测试数量
train_x=digits.data[:n_test,:]
train_y=digits.target[:n_test]
test_x=digits.data[n_test:,:]
true_y=digits.target[n_test:]
#训练模型
svm_classifier.fit(train_x,train_y)
#测试模型
y_predict=svm_classifier.predict(test_x)
#查看结果
from sklearn.metrics import accuracy_score
print("预测标签:",y_predict)
print("真实标签:",true_y)
print(accuracy_score(y_predict,true_y))
#保存模型
import pickle
with open("H:/pythonfigure/svm_predict.pkl","wb") as file:#必须二进制写入
    pickle.dump(svm_classifier,file)
import numpy as np
#重新加载模型进行预测
with open("H:/pythonfigure/svm_predict.pkl","rb") as file:#必须以二进制读
    model=pickle.load(file)
#随机选取样本测试
random_sample_index=np.random.randint(0,1796,5)
print(random_sample_index)
random_sample=digits.data[random_sample_index,:]#特征
random_targets=digits.target[random_sample_index]#标签
random_predict=model.predict(random_sample)
print(random_predict)
print(random_targets)

你可能感兴趣的:(python)