import cv2
# 读取图片
rawImage = cv2.imread("D:\\11\\test\\1\\pos22.jpg")
cv2.imshow("1",rawImage)
# 高斯模糊,将图片平滑化,去掉干扰的噪声
image = cv2.GaussianBlur(rawImage, (3,3),0)
# 图片灰度化
image = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
# Sobel算子(X方向)
Sobel_x = cv2.Sobel(image, cv2.CV_16S,1,0)
# Sobel_y = cv2.Sobel(image, cv2.CV_16S, 0, 1)
absX = cv2.convertScaleAbs(Sobel_x)# 转回uint8
# absY = cv2.convertScaleAbs(Sobel_y)
# dst = cv2.addWeighted(absX, 0.5, absY, 0.5, 0)
image = absX
# 二值化:图像的二值化,就是将图像上的像素点的灰度值设置为0或255,图像呈现出明显的只有黑和白
ret, image = cv2.threshold(image,0,255, cv2.THRESH_OTSU)
# 闭操作:闭操作可以将目标区域连成一个整体,便于 后续轮廓的提取。
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (3,5))
image = cv2.morphologyEx(image, cv2.MORPH_CLOSE, kernelX)
# 膨胀腐蚀(形态学处理)
kernelX = cv2.getStructuringElement(cv2.MORPH_RECT, (20,1))
kernelY = cv2.getStructuringElement(cv2.MORPH_RECT, (1,19))
image = cv2.dilate(image, kernelX)
image = cv2.erode(image, kernelX)
image = cv2.erode(image, kernelY)
image = cv2.dilate(image, kernelY)
# 平滑处理,中值滤波
image = cv2.medianBlur(image,3)
# 查找轮廓
contours, w1 = cv2.findContours(image, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:]
for itemin contours:
rect = cv2.boundingRect(item)
x = rect[0]
y = rect[1]
weight = rect[2]
height = rect[3]
if weight > (height *2):
# 裁剪区域图片
chepai = rawImage[y:y + height, x:x + weight]
cv2.imshow('chepai'+str(x), chepai)
chepaigray = cv2.cvtColor(chepai, cv2.COLOR_RGB2GRAY)
# cv2.imshow("2",chepaigray)
imageblur = cv2.medianBlur(chepaigray,3)
# cv2.imshow("1",imageblur)
# image = cv2.imread("D:\\11\\new\\2.jpg")
retval,result=cv2.threshold(chepaigray,150,255,cv2.THRESH_BINARY)
cv2.imshow("re",result)
# 绘制轮廓
#image = cv2.drawContours(rawImage, contours, -1, (0, 0, 255), 3)
cv2.imshow('image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()