- 20250725题解
关注我立刻回关
算法
首页排名提交记录题目列表测试比赛教师频道正版书籍关于1267:【例9.11】01背包问题时间限制:1000ms内存限制:65536KB提交数:71918通过数:43491【题目描述】一个旅行者有一个最多能装MM公斤的背包,现在有nn件物品,它们的重量分别是W1,W2,...,WnW1,W2,...,Wn,它们的价值分别为C1,C2,...,CnC1,C2,...,Cn,求旅行者能获得最大总价值。【
- Shusen Wang推荐系统学习 --召回 ItemCF
我.佛.糍.粑
学习深度学习人工智能推荐算法
学习b站up主ShusenWang的推荐系统基于物品的协同过滤(ItrmCF)中心思想就是,如果你喜欢a,b,c三件商品,d商品与abc相似,那么你也可能喜欢d商品对此就要计算物品的相似程度物品相似度物品相似度的思想是,一个物品的相同用户很多就意味着这两件物品是相似的sim(i1,i2):=∣V∣∣W1∣∣W2∣sim(i_{1},i_{2}):={\frac{\big|\mathcal{V}\b
- 编译器警告(级别1) C4172 返回局部变量或临时对象的地址
返回局部变量或临时对象的地址一个函数返回局部变量或临时对象的地址。当函数返回时,局部变量和临时对象被销毁,所以返回的地址是无效的。需要重新设计函数,使其不返回局部对象的地址。下面的示例会生成C4172警告://C4172.cpp//compilewith:/W1/LDfloatf=10;constdouble&bar(){//trythefollowinglineinstead//constflo
- 数据结构——图的遍历之深度优先遍历(DFS算法)_全世界最可爱的王小帅_CSDN博客
全世界最可爱的王小帅
数据结构图论算法cppc#
数据结构——图的遍历之深度优先遍历图的遍历一般分为深度优先遍历和广度优先遍历下面我们要说的是深度优先遍历**(DFS算法)**1,我们首先选择一个顶点作为起始点,假设我们选择顶点v作为起始点,首先访问v,然后找v的邻接点,访问v的一个还未被访问过邻接点w1,2,再以w1为起始点,然后去找w1的邻接点,访问w1的一个还未被访问过的邻接点w2,再以w2作为起始点继续往下访问…3,如果我们访问到一个顶点
- 神经网络全景图:五大核心架构详解与本质区别
摘取一颗天上星️
深度学习神经网络人工智能深度学习
在人工智能的进化史上,神经网络如同分形生长的生命体,不断分化出适应不同任务的专用结构。本文将深入解析五大核心神经网络架构,揭示其设计哲学与应用边界。一、前馈神经网络(FNN):万物起源的基石结构特点:严格的单向信息流(输入层→隐藏层→输出层),无循环连接输入层隐藏层1隐藏层2输出层数学本质:y=σ(W2⋅σ(W1⋅x+b1)+b2)y=\sigma(W_2\cdot\sigma(W_1\cdotx
- 语言模型的评估指标-Perplexity
净心净意
自然语言处理自然语言处理
前言语言模型是什么呢?标准定义:对于语言序列w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn,语言模型就是计算该序列的概率,即P(w1,w2,...,wn)P(w_1,w_2,...,w_n)P(w1,w2,...,wn)。通俗解释:判断一句话是不是我们正常说的话,即是不是人话。如P(我,打,篮球)>P(篮球,打,我)。那么怎样评估语言模型好坏呢?这里介绍一个评估指标
- 线性回归讲解L1和L2正则化
XiaoQiong.Zhang
Datamining人工智能机器学习数据挖掘
假设我们有一个线性回归问题:用房屋的面积(size)和房龄(age)两个特征来预测房价(price)。特征:size(面积,平方米),age(房龄,年)目标:price(价格,万元)1.没有正则化的普通线性回归(最容易过拟合)模型的公式是:预测价格=w1*size+w2*age+b其中w1和w2是我们要学习的权重(也叫系数),b是偏置项(也叫截距)。模型的损失函数通常是最小均方误差:MSE=(1/
- 【中等】AcWing3417. ——砝码称重
CCF_NOI.
信息学奥赛C++STL标准库算法数据结构
见:https://www.acwing.com/problem/content/3420/你有一架天平和NN个砝码,这NN个砝码重量依次是W1,W2,⋅⋅⋅,WNW1,W2,···,WN。请你计算一共可以称出多少种不同的正整数重量?注意砝码可以放在天平两边。输入格式输入的第一行包含一个整数NN。第二行包含NN个整数:W1,W2,W3,⋅⋅⋅,WNW1,W2,W3,···,WN。输出格式输出一个整
- 5.28 孔老师 nlp讲座
柠石榴
自然语言处理人工智能
本次讲座主要介绍了语言模型的起源、预训练模型以及大语言模型(需要闫老师后讲)等内容。首先,语言模型的起源可以追溯到语音识别中的统计语言模型,通过估计声学参数串产生文字串的概率来找到最大概率的文字串。然后,介绍了语言模型的基本概念,即给定一个文字串S,用P(w1,w2,…,WN)表示其概率。最后,提到了预训练模型在大语言模型中的应用,以及如何在语料库中解决条件概率稀疏的问题。1语言模型与条件概率估计
- 机器学习第二十二讲:感知机 → 模仿大脑神经元的开关系统
kovlistudio
机器学习人工智能技术机器学习人工智能
机器学习第二十二讲:感知机→模仿大脑神经元的开关系统资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南感知机详解:模仿生物神经元的智能开关[^9-1]感知机是最简单的神经网络单元,相当于数字电路中的与门,能够根据输入条件自动触发判断结果。通过"买冰淇淋的家庭决策"案例来理解:权重w1=
- 困惑度(Perplexity)
彬彬侠
自然语言处理基础困惑度PerplexityPyTorchPythonNLP自然语言处理
困惑度(Perplexity)1.定义困惑度(Perplexity,简称PP)是自然语言处理(NLP)中评估语言模型性能的一种常见度量。它反映了语言模型对给定文本的预测能力。简而言之,困惑度是语言模型对文本的“不确定性”或“混乱度”的度量,数值越低,说明模型对文本的预测能力越强。对于一个给定的序列,困惑度的计算公式为:PP(W)=P(w1,w2,...,wN)−1N=2H(p)PP(W)=P(w_
- ChatGPT与DeepSeek技术对比:架构、性能与场景的范式转移
张家铭02
人工智能chatgpt架构人工智能
一、技术架构的哲学分野基础模型架构ChatGPT:延续GPT系列的单向自回归语言模型架构,基于TransformerDecoder堆叠,通过自注意力机制实现序列生成,其第tt步的隐状态计算为:ht=TransformerDecoder(w1:t−1,ΘGPT)ht=TransformerDecoder(w1:t−1,ΘGPT)其中ΘGPTΘGPT包含1750亿参数(GPT-4达万亿级),通过大规模
- 李沐08线性回归和基础算法优化——自学笔记
Rrrrrr900
算法线性回归笔记pytorch深度学习机器学习python
线性回归简化模型输入、权重、偏差、输出给定n维输入:x=[x1,x2,…,xn]^T线性模型有一个n维权重和一个标量偏差:w=[w1,w2,…,wn]^T,b输出是输入的加权和:y=w1x1+w2x2+…+wnxn+b向量版:y=+b平方损失:比较真实值和预估值假设y是真实值,y^是估计值l(y,y)=0.5*(y-y)^2训练数据:收集一些数据点来决定参数值(权重和偏差,过去的值)训练数据通常越
- 神经网络笔记 - 感知机
我还没秃,还能学
神经网络笔记人工智能
一感知机是什么感知机(Perceptron)是一种接收输入信号并输出结果的算法。它根据输入与权重的加权和是否超过某个阈值(threshold),来判断输出0还是1。二.计算方式感知机的基本公式如下:X1,X2:输入W1,W1:权重θ:阈值输出:0or1三.简单逻辑门的实现逻辑门简介感知机可以模拟如下基本逻辑门:输入1输入2AND门输出NAND门输出OR门输出00010100110101111101
- 注意力机制
code 旭
AI人工智能学习python人工智能
实现了Bahdanau式加法注意力的核心计算逻辑。以下是三个线性层设计的完整技术解析:一、数学公式推导注意力分数计算流程:score(hdec,henc)=vT⋅tanh(W1⋅henc+W2⋅hdec)score(h_{dec},h_{enc})=v^T\cdot\tanh(W1\cdoth_{enc}+W2\cdoth_{dec})score(hdec,henc)=vT⋅tanh(W1⋅he
- 01背包问题及其应用
Android_chunhui
leetcode题解
01背包问题有n个重量为w1,w2,w3…的物品,价值分别为v1,v2,v3…,现有一个容量为C的背包,问在不超过背包容量的条件下,所装物品的最大价值是多少?这个问题有两个变量,分别为物品总数n,背包容量C。记F(n,C)F(n,C)F(n
- RNN,LTSM和GRU原理
thormas1996
深度学习RNNLSTMGRU
(一)tensorflow入门笔记(二)RNN,LSTM和GRU原理(三)attention机制(四)seq2seq实例详解##RNNRNN主要用来处理当样本是一定时间序列的情况,例如一段语音,一串文本等等。这类任务如果用CNN处理,很难反映出其时间上的特征原理Figure1.RNNStructure时间为t时,输入为x(t),隐藏层为h(t),输出为y(t),图中w1,w2,w3为共享的权重。向
- 如何快速理解模糊PID---(二)
Invinciblenuonuo
STM32算法
模糊控制规则上文只介绍了误差这一个输入量,我们可以用相同的方法对误差的变化率这一输入量进行模糊化。模糊控制规则主要有两种,Mamdini和T-S型模糊控制器这里只介绍Mamdini型模糊控制器Mamdini型模糊控制器就是一堆“如果x是U1y是U2那么z是W1”的语句组成先上图设误差为E,误差的变化率为EC,而输出量我们也用上文的方法将他划分出六个区域,并规定出它的模糊论域(NB,NM,NS,Z0
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 【无标题】大模型智能涌现的数学本质与底层机制
调皮的芋头
AI编程神经网络人工智能机器学习AIGC
大模型智能涌现的数学本质与底层机制一、语言建模的数学基础大模型的核心任务是基于概率链式法则建模语言序列:P(w1,...,wn)=∏t=1nP(wt∣w10^{11})时出现能力相变相变示例:参数量级涌现能力数学机制10^9基础语法低维流形建模10^11多步推理高维空间路径积分10^13跨模态类比抽象概念解纠缠五、知识压缩的代数结构张量分解视角:模型权重矩阵(W\in\mathbb{R}^{d×d
- Starlink卫星动力学系统仿真建模第十讲-基于SMC和四元数的卫星姿态控制示例及Python实现
瓦力的狗腿子
python开发语言算法
基于四元数与滑模控制的卫星姿态控制一、基本原理1.四元数姿态表示四元数运动学方程:3.滑模控制设计二、代码实现(Python)1.四元数运算工具importnumpyasnpdefquat_mult(q1,q2):"""四元数乘法"""w1,x1,y1,z1=q1w2,x2,y2,z2=q2w=w1*w2-x1*x2-y1*y2-z1*z2x=w1*x2+x1*w2+y1*z2-z1*y2y=w1
- 头歌实训作业 算法设计与分析-动态规划(第1关:0/1背包问题)
Milk夜雨
头歌实训作业算法动态规划
任务描述求解0/1背包问题。问题描述有n个重量分别为{w1,w2,…,wn}的物品,它们的价值分别为{v1,v2,…,vn},给定一个容量为W的背包。设计从这些物品中选取一部分物品放入该背包的方案,每个物品要么选中要么不选中,要求选中的物品不仅能够放到背包中,而且重量和为W,并具有最大的价值。测试说明测试输入:第一行为2个整数,分别表示物品数量n(1≤n≤20)和背包容量W(1≤W≤10000)。
- Qt Widget开发学习笔记3:信号与槽
pengisgod
Qt与其他编程语言或则软件开发套间在线程上的使用上有很大的不同。Qt使用了一种叫信号与槽的机制(技术),拓展了程序块之间的事件触发方式。一种典型的使用方式是用于子窗口和父窗口的信息传递。假设主窗口W1和它的一个子窗口W2,如果说W2中发生了某件事,而根据逻辑需要改变主窗口的某些属性,一种典型的处理方式是获取父窗口指针进行修改,那如果要修改爷爷窗口呢?如果要修改叔叔窗口呢?这个时候就凸显出信号与槽机
- 线性回归原理与python实现
o0Orange
python线性回归算法
线性回归原理:在一堆散点中xiyi,拟合出一个函数使其离所有点最近目标函数:y=w1x+w0误差函数:MSE(均方误差)L(w1,w0)=Σ(yi-y)^2优化方法:梯度下降,autograd,反向传播,优化公式,进行更新公式更新:wt+1=wt-dL/dwt*δ乘积的意义:将梯度乘以学习率,得到的结果是参数更新的大小。如果梯度较大,乘以一个较小的学习率可以使参数更新的幅度减小,保持在一个合理的范
- [蓝桥杯2021初赛] 砝码称重
%xiao Q
蓝桥蓝桥杯深度优先c++
题目题目描述你有一架天平和N个砝码,这N个砝码重量依次是W1,W2,…,WN。请你计算一共可以称出多少种不同的重量?注意砝码可以放在天平两边。输入格式输入的第一行包含一个整数N。第二行包含N个整数:W1,W2,W3,…,WN。对于50%的评测用例,1≤N≤15。对于所有评测用例,1≤N≤100,N个砝码总重不超过100000。输出格式输出一个整数代表答案。输入样例3146输出样例10分析这道题暴力
- Peter算法小课堂—背包问题
Peter Pan was right
算法
我们已经学过好久好久的动态规划了,动态规划_PeterPanwasright的博客-CSDN博客那么,我用一张图片来概括一下背包问题。大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西。01背包题目:小偷来你家,他带的包只能装c斤的财务。你家有n种财务,分别重w1、w2......wn斤,价值分别为v1、v2......,请输出能拿走的最大总价值?大家思考一下状态定义和
- 玖玖酱的成长复盘-2022年3月w1周复盘
玖玖酱知识可视化
这周从个人成长、身体健康、朋友关系、休闲娱乐四个方面进行复盘。1.个人成长方面☘️事:成就1:输出关于家庭教育的笔记大纲笔记6篇,导图5张;还输出一次成长思考1次,以及清单1张。成就2:开了公众号。我们精进社群真的太棒了,经常能跟着大家学习到新的认知。比如上周经过大家在群里的讨论,我意识到,发在朋友圈的内容,不容易搜索和沉淀,所以开了公众号。然而排版,真的是个比较麻烦的事情,发第一篇公众号的时候,
- 2 月 6 日算法练习- 动态规划
小蒋的学习笔记
算法算法动态规划
砝码承重【问题描述】你有一架天平和N个砝码,这N个砝码重量依次是W1,W2,...,WN。请你计算一共可以称出多少种不同的正整数重量?注意砝码可以放在天平两边。【输入格式】输入的第一行包含一个整数N。第二行包含N个整数:W1,W2,W3,...,WN。【输出格式】输出一个整数代表答案。【样例输入】3146【输出样例】10【样例说明】能称出的10种重量是:1、2、3、4、5、6、7、9、10、11。
- 题目 2604: 蓝桥杯2021年第十二届省赛真题-砝码称重
不想上课的hh
蓝桥杯往届真题详解蓝桥杯动态规划c++算法c语言
时间限制:1Sec内存限制:128MB提交:679解决:226题目描述你有一架天平和N个砝码,这N个砝码重量依次是W1,W2,···,WN。请你计算一共可以称出多少种不同的重量?注意砝码可以放在天平两边。输入输入的第一行包含一个整数N。第二行包含N个整数:W1,W2,W3,···,WN。输出输出一个整数代表答案。样例输入复制3146样例输出复制10提示【样例说明】能称出的10种重量是:1、2、3、
- 背包问题(01背包、完全背包、多重背包)详解(超详细!!!),及题目代码和题意,包含6个例题。
Edge_Coduck_S07738
算法c++
第一题:01背包问题01背包问题时间限制:1秒内存限制:128M题目描述一个旅行者有一个最多能装M公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn,求旅行者能获得最大总价值。输入描述第一行:两个整数,M(背包容量,M≤200)和N(物品数量,N≤30);第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。输出描述仅一行,
- 微信开发者验证接口开发
362217990
微信 开发者 token 验证
微信开发者接口验证。
Token,自己随便定义,与微信填写一致就可以了。
根据微信接入指南描述 http://mp.weixin.qq.com/wiki/17/2d4265491f12608cd170a95559800f2d.html
第一步:填写服务器配置
第二步:验证服务器地址的有效性
第三步:依据接口文档实现业务逻辑
这里主要讲第二步验证服务器有效性。
建一个
- 一个小编程题-类似约瑟夫环问题
BrokenDreams
编程
今天群友出了一题:
一个数列,把第一个元素删除,然后把第二个元素放到数列的最后,依次操作下去,直到把数列中所有的数都删除,要求依次打印出这个过程中删除的数。
&
- linux复习笔记之bash shell (5) 关于减号-的作用
eksliang
linux关于减号“-”的含义linux关于减号“-”的用途linux关于“-”的含义linux关于减号的含义
转载请出自出处:
http://eksliang.iteye.com/blog/2105677
管道命令在bash的连续处理程序中是相当重要的,尤其在使用到前一个命令的studout(标准输出)作为这次的stdin(标准输入)时,就显得太重要了,某些命令需要用到文件名,例如上篇文档的的切割命令(split)、还有
- Unix(3)
18289753290
unix ksh
1)若该变量需要在其他子进程执行,则可用"$变量名称"或${变量}累加内容
什么是子进程?在我目前这个shell情况下,去打开一个新的shell,新的那个shell就是子进程。一般状态下,父进程的自定义变量是无法在子进程内使用的,但通过export将变量变成环境变量后就能够在子进程里面应用了。
2)条件判断: &&代表and ||代表or&nbs
- 关于ListView中性能优化中图片加载问题
酷的飞上天空
ListView
ListView的性能优化网上很多信息,但是涉及到异步加载图片问题就会出现问题。
具体参看上篇文章http://314858770.iteye.com/admin/blogs/1217594
如果每次都重新inflate一个新的View出来肯定会造成性能损失严重,可能会出现listview滚动是很卡的情况,还会出现内存溢出。
现在想出一个方法就是每次都添加一个标识,然后设置图
- 德国总理默多克:给国人的一堂“震撼教育”课
永夜-极光
教育
http://bbs.voc.com.cn/topic-2443617-1-1.html德国总理默多克:给国人的一堂“震撼教育”课
安吉拉—默克尔,一位经历过社会主义的东德人,她利用自己的博客,发表一番来华前的谈话,该说的话,都在上面说了,全世界想看想传播——去看看默克尔总理的博客吧!
德国总理默克尔以她的低调、朴素、谦和、平易近人等品格给国人留下了深刻印象。她以实际行动为中国人上了一堂
- 关于Java继承的一个小问题。。。
随便小屋
java
今天看Java 编程思想的时候遇见一个问题,运行的结果和自己想想的完全不一样。先把代码贴出来!
//CanFight接口
interface Canfight {
void fight();
}
//ActionCharacter类
class ActionCharacter {
public void fight() {
System.out.pr
- 23种基本的设计模式
aijuans
设计模式
Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定它们具体的类。 Adapter:将一个类的接口转换成客户希望的另外一个接口。A d a p t e r模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。 Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。 Builder:将一个复杂对象的构建与它的表示分离,使得同
- 《周鸿祎自述:我的互联网方法论》读书笔记
aoyouzi
读书笔记
从用户的角度来看,能解决问题的产品才是好产品,能方便/快速地解决问题的产品,就是一流产品.
商业模式不是赚钱模式
一款产品免费获得海量用户后,它的边际成本趋于0,然后再通过广告或者增值服务的方式赚钱,实际上就是创造了新的价值链.
商业模式的基础是用户,木有用户,任何商业模式都是浮云.商业模式的核心是产品,本质是通过产品为用户创造价值.
商业模式还包括寻找需求
- JavaScript动态改变样式访问技术
百合不是茶
JavaScriptstyle属性ClassName属性
一:style属性
格式:
HTML元素.style.样式属性="值";
创建菜单:在html标签中创建 或者 在head标签中用数组创建
<html>
<head>
<title>style改变样式</title>
</head>
&l
- jQuery的deferred对象详解
bijian1013
jquerydeferred对象
jQuery的开发速度很快,几乎每半年一个大版本,每两个月一个小版本。
每个版本都会引入一些新功能,从jQuery 1.5.0版本开始引入的一个新功能----deferred对象。
&nb
- 淘宝开放平台TOP
Bill_chen
C++c物流C#
淘宝网开放平台首页:http://open.taobao.com/
淘宝开放平台是淘宝TOP团队的产品,TOP即TaoBao Open Platform,
是淘宝合作伙伴开发、发布、交易其服务的平台。
支撑TOP的三条主线为:
1.开放数据和业务流程
* 以API数据形式开放商品、交易、物流等业务;
&
- 【大型网站架构一】大型网站架构概述
bit1129
网站架构
大型互联网特点
面对海量用户、海量数据
大型互联网架构的关键指标
高并发
高性能
高可用
高可扩展性
线性伸缩性
安全性
大型互联网技术要点
前端优化
CDN缓存
反向代理
KV缓存
消息系统
分布式存储
NoSQL数据库
搜索
监控
安全
想到的问题:
1.对于订单系统这种事务型系统,如
- eclipse插件hibernate tools安装
白糖_
Hibernate
eclipse helios(3.6)版
1.启动eclipse 2.选择 Help > Install New Software...> 3.添加如下地址:
http://download.jboss.org/jbosstools/updates/stable/helios/ 4.选择性安装:hibernate tools在All Jboss tool
- Jquery easyui Form表单提交注意事项
bozch
jquery easyui
jquery easyui对表单的提交进行了封装,提交的方式采用的是ajax的方式,在开发的时候应该注意的事项如下:
1、在定义form标签的时候,要将method属性设置成post或者get,特别是进行大字段的文本信息提交的时候,要将method设置成post方式提交,否则页面会抛出跨域访问等异常。所以这个要
- Trie tree(字典树)的Java实现及其应用-统计以某字符串为前缀的单词的数量
bylijinnan
java实现
import java.util.LinkedList;
public class CaseInsensitiveTrie {
/**
字典树的Java实现。实现了插入、查询以及深度优先遍历。
Trie tree's java implementation.(Insert,Search,DFS)
Problem Description
Igna
- html css 鼠标形状样式汇总
chenbowen00
htmlcss
css鼠标手型cursor中hand与pointer
Example:CSS鼠标手型效果 <a href="#" style="cursor:hand">CSS鼠标手型效果</a><br/>
Example:CSS鼠标手型效果 <a href="#" style=&qu
- [IT与投资]IT投资的几个原则
comsci
it
无论是想在电商,软件,硬件还是互联网领域投资,都需要大量资金,虽然各个国家政府在媒体上都给予大家承诺,既要让市场的流动性宽松,又要保持经济的高速增长....但是,事实上,整个市场和社会对于真正的资金投入是非常渴望的,也就是说,表面上看起来,市场很活跃,但是投入的资金并不是很充足的......
 
- oracle with语句详解
daizj
oraclewithwith as
oracle with语句详解 转
在oracle中,select 查询语句,可以使用with,就是一个子查询,oracle 会把子查询的结果放到临时表中,可以反复使用
例子:注意,这是sql语句,不是pl/sql语句, 可以直接放到jdbc执行的
----------------------------------------------------------------
- hbase的简单操作
deng520159
数据库hbase
近期公司用hbase来存储日志,然后再来分析 ,把hbase开发经常要用的命令找了出来.
用ssh登陆安装hbase那台linux后
用hbase shell进行hbase命令控制台!
表的管理
1)查看有哪些表
hbase(main)> list
2)创建表
# 语法:create <table>, {NAME => <family&g
- C语言scanf继续学习、算术运算符学习和逻辑运算符
dcj3sjt126com
c
/*
2013年3月11日20:37:32
地点:北京潘家园
功能:完成用户格式化输入多个值
目的:学习scanf函数的使用
*/
# include <stdio.h>
int main(void)
{
int i, j, k;
printf("please input three number:\n"); //提示用
- 2015越来越好
dcj3sjt126com
歌曲
越来越好
房子大了电话小了 感觉越来越好
假期多了收入高了 工作越来越好
商品精了价格活了 心情越来越好
天更蓝了水更清了 环境越来越好
活得有奔头人会步步高
想做到你要努力去做到
幸福的笑容天天挂眉梢 越来越好
婆媳和了家庭暖了 生活越来越好
孩子高了懂事多了 学习越来越好
朋友多了心相通了 大家越来越好
道路宽了心气顺了 日子越来越好
活的有精神人就不显
- java.sql.SQLException: Value '0000-00-00' can not be represented as java.sql.Tim
feiteyizu
mysql
数据表中有记录的time字段(属性为timestamp)其值为:“0000-00-00 00:00:00”
程序使用select 语句从中取数据时出现以下异常:
java.sql.SQLException:Value '0000-00-00' can not be represented as java.sql.Date
java.sql.SQLException: Valu
- Ehcache(07)——Ehcache对并发的支持
234390216
并发ehcache锁ReadLockWriteLock
Ehcache对并发的支持
在高并发的情况下,使用Ehcache缓存时,由于并发的读与写,我们读的数据有可能是错误的,我们写的数据也有可能意外的被覆盖。所幸的是Ehcache为我们提供了针对于缓存元素Key的Read(读)、Write(写)锁。当一个线程获取了某一Key的Read锁之后,其它线程获取针对于同
- mysql中blob,text字段的合成索引
jackyrong
mysql
在mysql中,原来有一个叫合成索引的,可以提高blob,text字段的效率性能,
但只能用在精确查询,核心是增加一个列,然后可以用md5进行散列,用散列值查找
则速度快
比如:
create table abc(id varchar(10),context blog,hash_value varchar(40));
insert into abc(1,rep
- 逻辑运算与移位运算
latty
位运算逻辑运算
源码:正数的补码与原码相同例+7 源码:00000111 补码 :00000111 (用8位二进制表示一个数)
负数的补码:
符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。 -7 源码: 10000111 ,其绝对值为00000111 取反加一:11111001 为-7补码
已知一个数的补码,求原码的操作分两种情况:
- 利用XSD 验证XML文件
newerdragon
javaxmlxsd
XSD文件 (XML Schema 语言也称作 XML Schema 定义(XML Schema Definition,XSD)。 具体使用方法和定义请参看:
http://www.w3school.com.cn/schema/index.asp
java自jdk1.5以上新增了SchemaFactory类 可以实现对XSD验证的支持,使用起来也很方便。
以下代码可用在J
- 搭建 CentOS 6 服务器(12) - Samba
rensanning
centos
(1)安装
# yum -y install samba
Installed:
samba.i686 0:3.6.9-169.el6_5
# pdbedit -a rensn
new password:123456
retype new password:123456
……
(2)Home文件夹
# mkdir /etc
- Learn Nodejs 01
toknowme
nodejs
(1)下载nodejs
https://nodejs.org/download/ 选择相应的版本进行下载 (2)安装nodejs 安装的方式比较多,请baidu下
我这边下载的是“node-v0.12.7-linux-x64.tar.gz”这个版本 (1)上传服务器 (2)解压 tar -zxvf node-v0.12.
- jquery控制自动刷新的代码举例
xp9802
jquery
1、html内容部分 复制代码代码示例: <div id='log_reload'>
<select name="id_s" size="1">
<option value='2'>-2s-</option>
<option value='3'>-3s-</option