[再寄小读者之数学篇](2014-06-20 求极限-H\"older 不等式的应用)

设非负严格增加函数 $f$ 在区间 $[a,b]$ 上连续, 有积分中值定理, 对于每个 $p>0$ 存在唯一的 $x_p\in (a,b)$, 使 $$\bex f^p(x_p)=\cfrac{1}{b-a}\int_a^b f^p(t)\rd t. \eex$$ 试求 $\dps{\vlm{p}x_p}$.

 

解答: 由 H\"older 不等式, $$\beex \bea f^p(x_p)&=\cfrac{1}{b-a}\int_a^b f^p(t)\cdot 1\rd t\\ &\leq \cfrac{1}{b-a}\sex{ \int_a^b f^{p\cdot\frac{p+1}{p}}(t)\rd t }^\frac{p}{p+1} \sex{ \int_a^b 1^{p+1}\rd t }^{\frac{1}{p+1}}\\ &=\cfrac{1}{b-a} \sex{\int_a^b f^{p+1}(t)\rd t}^{\frac{p}{p+1}} (b-a)^{\frac{1}{p+1}}\\ &=\sex{\cfrac{1}{b-a}\int_a^b f^{p+1}(t)\rd t}^\frac{p}{p+1}\\ &=f^p(x_{p+1}). \eea \eeex$$ 又 $f$ 严格递增, 我们有 $x_p\leq x_{p+1}$. 如此, $x_p$ 递增有上界. 由单调有界定理, $\dps{\vlm{p}x_p=x_\infty}$ 存在. 另外, $$\beex \bea f(x_p)&=\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}},\\ f(x_\infty)&=\vlm{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} =\max_{a\leq t\leq b}f(t)=f(b),\\ x_\infty&=b, \eea \eeex$$ 其中第二个等式成立 (对 $f\geq 0$) 的理由如下. 显然, $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}} \leq \max_{a\leq t\leq b}f(t). \eex$$ 又设 $$\bex \exists\ \xi\in [a,b],\st f(\xi)=\max_{a\leq t\leq b}f(t). \eex$$ 而对 $\forall\ \ve>0$, 存在 $\xi$ 的某个左或右邻域 (因为 $\xi$ 可能为端点, 而只能如此说) $[c,d]$ 使得 $$\bex x\in [c,d]\ra f(x)\geq f(\xi)-\ve. \eex$$ 于是 $$\beex \bea \sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}&\geq \sez{\cfrac{1}{b-a}\int_c^d f^p(t)\rd t}^{\frac{1}{p}}\\ &\geq [f(\xi)-\ve] \sex{\cfrac{d-c}{b-a}}^{\frac{1}{p}}. \eea \eeex$$ 令 $p\to\infty$ 有 $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}\geq f(\xi)-\ve. \eex$$ 再令 $\ve\to 0^+$ 有 $$\bex \vls{p}\sez{\cfrac{1}{b-a}\int_a^b f^p(t)\rd t}^{\frac{1}{p}}\geq f(\xi). \eex$$

你可能感兴趣的:(数学)