以下是关于神经网络、机器学习、深度学习以及大数据学习的备忘单,其中部分内容和此前发布的《资源 | 值得收藏的 27 个机器学习的小抄》有所重复,大家可以两篇综合起来看。
提示:点击图片查看大图
神经网络
神经网络图谱
机器学习概览
机器学习:Scikit-learn算法
Scikit-learn
开源的,功能强大的基于Python的科学计算工具包,包含大量的分类、回归与聚类算法,支持向量机、随机森林以及Gradient Boosting等。
微软 Azure 算法流程帮你基于数据性质选择合适的算法
Python for Data Science
TensorFlow
2017 年 5 月,谷歌宣布了第二代 TPU ,并在Google Compute Engine中加入了对 TPU 的支持。第二代 TPU 有高达 180 万亿次浮点运算性能。当 64 块TPU 组合使用时,可提供高达 11.5 千万亿次浮点运算的性能。
Keras
2017 年,TensorFlow核心库加入了对 Keras 的支持。Keras作者Chollet表示Keras更适合作端口使用,而非端对端的机器学习框架,它提供了更高级更直观的抽象集合,可轻松配置神经网络,无需考虑后端科学计算库。
NumPy
NumPy系统是Python的一种开源的数值计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多。
Pandas:Python中的结构化数据分析利器
Data Wrangling
Data Wrangling with dplyr and tidyr
SciPy
基于 NumPy 数组对象构建,是 NumPy 堆栈的一部分,包含 Matplotlib,pandas 和 SymPy 等工具,以及一个科学计算库的扩展集。
Matplotlib
Matplotlib是Python中常用的可视化工具之一,便于创建海量类型2D图表和一些基本的3D图表。
数据可视化
PySpark
Big-O
备忘单来源:
Big-O Algorithm Cheat Sheet:
http://bigocheatsheet.com/
Bokeh Cheat Sheet: https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Python_Bokeh_Cheat_Sheet.pdf
Data Science Cheat Sheet: https://www.datacamp.com/community/tutorials/python-data-science-cheat-sheet-basics
Data Wrangling Cheat Sheet:
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf
Data Wrangling:
https://en.wikipedia.org/wiki/Data_wrangling
Ggplot Cheat Sheet:
https://www.rstudio.com/wp-content/uploads/2015/03/ggplot2-cheatsheet.pdf
Keras Cheat Sheet:
https://www.datacamp.com/community/blog/keras-cheat-sheet#gs.DRKeNMs
Keras:
https://en.wikipedia.org/wiki/Keras
Machine Learning Cheat Sheet:
https://ai.icymi.email/new-machinelearning-cheat-sheet-by-emily-barry-abdsc/
Machine Learning Cheat Sheet: https://docs.microsoft.com/en-in/azure/machine-learning/machine-learning-algorithm-cheat-sheet
ML Cheat Sheet::
http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html
Matplotlib Cheat Sheet:
https://www.datacamp.com/community/blog/python-matplotlib-cheat-sheet#gs.uEKySpY
Matpotlib:
https://en.wikipedia.org/wiki/Matplotlib
Neural Networks Cheat Sheet:
http://www.asimovinstitute.org/neural-network-zoo/
Neural Networks Graph Cheat Sheet:
http://www.asimovinstitute.org/blog/
Neural Networks:
https://www.quora.com/Where-can-find-a-cheat-sheet-for-neural-network
Numpy Cheat Sheet:
https://www.datacamp.com/community/blog/python-numpy-cheat-sheet#gs.AK5ZBgE
NumPy: https://en.wikipedia.org/wiki/NumPy
Pandas Cheat Sheet:
https://www.datacamp.com/community/blog/python-pandas-cheat-sheet#gs.oundfxM
Pandas: https://en.wikipedia.org/wiki/Pandas_(software)
Pandas Cheat Sheet:
https://www.datacamp.com/community/blog/pandas-cheat-sheet-python#gs.HPFoRIc
Pyspark Cheat Sheet:
https://www.datacamp.com/community/blog/pyspark-cheat-sheet-python#gs.L=J1zxQ
Scikit Cheat Sheet:
https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet
Scikit-learn:
https://en.wikipedia.org/wiki/Scikit-learn
Scikit-learn Cheat Sheet:
http://peekaboo-vision.blogspot.com/2013/01/machine-learning-cheat-sheet-for-scikit.html
Scipy Cheat Sheet:
https://www.datacamp.com/community/blog/python-scipy-cheat-sheet#gs.JDSg3OI
SciPy: https://en.wikipedia.org/wiki/SciPy
TesorFlow Cheat Sheet:
https://www.altoros.com/tensorflow-cheat-sheet.html
Tensor Flow:
https://en.wikipedia.org/wiki/TensorFlow
作者|Stefan Kojouharov
原文地址