- 【SVM】支持向量机实例合集
KENYCHEN奉孝
支持向量机算法机器学习
基于Java的SVM(支持向量机)实例合集以下是一个基于Java的SVM(支持向量机)实例合集,包含核心代码示例和应用场景说明。这些例子基于流行的机器学习库(如LIBSVM、Weka、JSAT)实现。数据准备与加载使用LIBSVM格式加载数据集://加载LIBSVM格式数据svm_problemprob=newsvm_problem();prob.l=dataSize;//样本数量prob.x=n
- Java与机器学习的邂逅:Weka框架入门指南
墨夶
Java学习资料1java机器学习数据挖掘
在这个数据驱动的时代,机器学习已经成为各行业创新和优化的关键技术。而Java,作为一门成熟且广泛应用的编程语言,在企业级应用开发中占据着重要地位。将二者结合起来,利用Java实现机器学习算法,不仅可以充分发挥其强大的生态系统优势,还能为开发者提供一个高效、稳定的开发环境。今天,我们将带您走进Java与机器学习的世界,探索如何使用Weka这一著名的机器学习库来开启您的智能之旅。Weka简介及其优势什
- 数据挖掘与机器学习 期末复习整理
无敌摸鱼高手
数据挖掘与机器学习数据挖掘机器学习人工智能期末复习知识总结
1.分类:–有类别标记信息,因此是一种监督学习–根据训练样本获得分类器,然后把每个数据归结到某个已知的类,进而也可以预测未来数据的归类。2.聚类:–无类别标记,因此是一种无监督学习–无类别标记样本,根据信息相似度原则进行聚类,通过聚类,人们能够识别密集的和稀疏的区域,因而发现全局的分布模式,以及数据属性之间的关系3.聚类方法:划分方法-(分割类型)K-均值K-Means顺序领导者方法基于模型的方法
- 特征分析工程化
梨V_v
文献深度学习人工智能神经网络笔记
scikit功能Python中的特征选择存储库scikit-feature。scikit-feature是一个开源的Python特征选择库,由亚利桑那州立大学数据挖掘与机器学习实验室开发。它基于一个广泛使用的机器学习包scikit-learn以及两个科学计算包Numpy和Scipy构建。scikit-feature包含大约40种流行的特征选择算法,包括传统的特征选择算法以及一些结构化和流式特征选择
- Weka通过10天的内存指标数据计算内存指标动态阈值
飞火流星02027
机器学习#人工智能#Java数据挖掘人工智能机器学习Weka计算指标动态阈值使用统计方法计算动态阈值
在数据处理和监控系统中,动态阈值的计算是一种常见的方法,用以根据数据的实际分布和变化来调整阈值,从而更有效地监控和预警。在Weka中,虽然它主要是用于机器学习和数据挖掘的工具,但你可以通过一些间接的方法来实现内存指标的动态阈值计算。下面是一些步骤和思路,你可以用来计算内存指标的动态阈值:环境Weka官方网站:Weka3-DataMiningwithOpenSourceMachineLearning
- 大数据挖掘与机器学习:区别与联系全解析
大数据洞察
CSDN数据挖掘机器学习人工智能ai
大数据挖掘与机器学习:区别与联系全解析关键词:大数据挖掘、机器学习、区别、联系、数据处理、算法应用摘要:本文旨在全面解析大数据挖掘与机器学习的区别与联系。首先介绍了大数据挖掘和机器学习的背景,包括其目的、预期读者和文档结构等内容。接着详细阐述了两者的核心概念、算法原理、数学模型等。通过实际的代码案例展示了它们在项目中的应用,并探讨了各自的实际应用场景。同时,推荐了相关的学习资源、开发工具和论文著作
- 数据挖掘与机器学习技术
数据库
数据挖掘与机器学习技术数据挖掘算法:数据挖掘旨在从大量数据中发现潜在的模式和规律。常见的数据挖掘算法包括关联规则挖掘(如Apriori算法)、聚类分析(如K-Means算法)、分类算法(如决策树、支持向量机等)。例如,电商平台可以通过关联规则挖掘发现用户购买商品之间的关联关系,从而进行精准营销。机器学习框架:机器学习是大数据分析的核心技术之一,它让计算机通过数据学习模式和规律,并进行预测和决策。常
- 如何从Excel中导入数据集到Weka
漂洋过海cv
如何在Weka中加载CSV机器学习数据从Excel中导入数据集到Weka(.xlsx->.csv->.arff)具体内容参考下述文章:https://cloud.tencent.com/developer/news/122669
- weka 决策树
marui1982
机器学习
1.参数说明:Generaloptions:-hor-helpOutputhelpinformation.-synopsisor-infoOutputsynopsisforclassifier(useinconjunctionwith-h)-t(trainfile,训练文件,通常训练时只需要此文件即可,会进行10交叉验证)Setstrainingfile.-T(测试文件,如果设置,则不进行交叉验证
- sklearn 支持向量机实践总结
可爱的红薯
pythonsklearn支持向量机pythonsklearn支持向量机
转自http://www.cnblogs.com/pinard/p/6117515.html之前通过一个系列对支持向量机(以下简称SVM)算法的原理做了一个总结,本文从实践的角度对scikit-learnSVM算法库的使用做一个小结。scikit-learnSVM算法库封装了libsvm和liblinear的实现,仅仅重写了算法了接口部分。1.scikit-learnSVM算法库使用概述sciki
- DataSet:数据挖掘与机器学习应用
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
DataSet:数据挖掘与机器学习应用作者:禅与计算机程序设计艺术1.背景介绍1.1.数据挖掘与机器学习的兴起近年来,随着互联网、物联网、云计算等技术的快速发展,全球数据量呈现爆炸式增长,数据的积累为数据挖掘和机器学习提供了丰富的素材。数据挖掘和机器学习作为从数据中提取有用信息和知识的关键技术,正在各个领域发挥着越来越重要的作用,例如商业智能、金融分析、医疗诊断、网络安全等等。1.2.DataSe
- R语言机器学习与临床预测模型77--机器学习预测常用R语言包
武昌库里写JAVA
面试题汇总与解析springlog4jjava开发语言算法
R小盐准备介绍R语言机器学习与预测模型的学习笔记你想要的R语言学习资料都在这里,快来收藏关注【科研私家菜】01预测模型常用R包常见回归分析包:rpart包含有分类回归树的方法;earth包可以实现多元自适应样条回归;mgev包含广义加性模型回归;Rweka包中的MSP函数可用于回归。pls包中的plsr函数实现偏最小二乘和主成分回归。stats包中的ppr函数实现投影寻踪分析,同时包括线性回归的方
- Python 数据挖掘与机器学习
岁月如歌,青春不败
人工智能python数据挖掘机器学习编程决策树随机森林神经网络
模块一:Python编程Python编程入门1、Python环境搭建2、如何选择Python编辑器?3、Python基础4、常见的错误与程序调试5、第三方模块的安装与使用6、文件读写(I/O)Python进阶与提高1、Numpy模块库2、Pandas模块库3、Matplotlib基本图形绘制4、图形样式的美化5、图形的布局6、高级图形绘制7、坐标轴高阶应用模块二:特征工程数据清洗1、描述性统计分析
- Petitjean2016A代码运行配置
sunnyorcloudy
1.新建javaproject,名称DBA2.在projectlayout处,选择“Useprojectfolderasrootforsourcesandclassfiles”3.import-ExistingprojectsintoWorkspace-选择wekaprojectwekaproject是从weka官网下载weka-src.jar,解压后,将其中的main目录下的weka项目导入得来
- 11.4 看不懂就慢慢看啊
反复练习的阿离很笨吧
记得组合数学正交拉丁方从0开始!突然觉得老师说得很有道理,演化计算里活得最好的,不是最优秀的但也不是最差的,是最能适应环境的,别人怎么做,他就怎么做。动态规划,运筹学贝叶斯是生成学习算法,生成一个概率模型判别学习算法高斯判别分析/**NB.java*Copyright2005LiangxiaoJiang*/packageweka.classifiers.gla;importweka.core.*;
- python 数据挖掘与机器学习
科研的力量
人工智能ChatGPTpython数据挖掘机器学习神经网络随机森林决策树贝叶斯
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。模块一:课前准备Python编程基础与进阶Python编程入门1、Python环境搭建(
- 2019-04-19
AliceGYY
线性函数Y=0.8567+0.516XX称为自变量,也就是自己会变化的量。Y称作因变量,也就是因为X变化而引起变化的量。线性回归,能够用来探索多个变量与另一个变量之间的线性关系。weka、SPSS软件实现编程。
- 大数据之Spark
进击的-小胖子
大数据sparkbigdatascala大数据实时大数据
Spark介绍什么是Spark专为大规模数据处理而设计的快速通用的计算引擎类HadoopMapReduce的通用并行计算框架拥有HadoopMapReduce所具有的优点但不同于MapReduce的是Job中间输出结果可以缓存在内存中,从而不再需要读写HDFS,减少磁盘数据交互因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的算法Spark是Scala编写,方便快速编程Spark与MR的区
- Weka在数据挖掘中的运用 02 Getting Started with Weka
jenye_
Weka的发音不是Weaker安装Weka研究“Explorer”接口研究一些数据集创建一个分类器解释输出使用filters(过滤器)可视化数据集安装Wekajava环境安装包选择适合你电脑系统的版本。Explorer界面对于这门课程指用到Exploer界面。Experimenter界面针对基于不同数据集的不同机器学习方法的大规模性能比较。KnowlegeFlow界面是Weka的图形界面和命令行界
- 高可用分布式部署Spark、完整详细部署教程
一座野山
sparkbigdatahadoop分布式spark大数据linux
前言Spark是UCBerkeleyAMPLab开源的通用分布式并行计算框架。Spark基于mapreduce算法实现的分布式计算,拥有HadoopMapReduce所具有的优点;但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的mapreduce的算法。spark是基于内存计算框架,计算速度非常
- 《数据挖掘基础》实验:Weka平台实现聚类算法
lazyn
数据挖掘原理聚类数据挖掘算法机器学习Weka
实验目的进一步理解聚类算法(K-平均、PAM、层次聚类、密度聚类),利用weka实现数据集的聚类处理,学会调整模型参数,以图或树的形式给出挖掘结果,并解释规则的含义。实验要求(1)随机选取数据集(UCI或data文件夹),需要做预处理的,单独说明处理过程。完成以下内容:(用四种方法:K-means、K-中心法、层次、密度)文件导入与编辑参数设置说明结果截图结果分析与对比(2)以AQI.xls中1-
- Python数据挖掘与机器学习实践技术应用
思考的小猴子
机器学习python数据挖掘机器学习
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。为各领域人员量身定制课程内容,让你畅学Python编程及机器学习理论与代码实现方法,从“
- Spark相关知识点(期末复习集锦)
夜をむかえる
spark大数据分布式
嗨喽,最近小伙伴们快要期末考试了吧,下面是我对《Spark零基础实战》的总结,希望能帮助到你们。一、Spark简介Spark,拥有hadoopMR所具有的优点,但不同于MR的是job中监测结果可以保存在内存中,从而不再需要读写HDFS,因此spark能够更好的适用于数据挖掘与机器学习等需要迭代的mr的算法。1.Spark,使用scala语言实现,这是一种面向对象函数式编程语言,能够像操作本地集合对
- 1.5 The Leaming Problem-Machine Leaming and other Fields|机器学习基石(林轩田)-学习笔记
努力奋斗的durian
文章原创,最近更新:2018-06-27学习链接:1.5TheLeamingProblem-MachineLeamingandotherFields1.MachineLearningandDataMining(机器学习与数据挖掘)讲完了机器学习完整的流程,下面将一下机器学习与其他相关领域的关系第一个讲的领域就是数据挖掘,数据挖掘与机器学习有什么不一样,如下:机器学习是用资料找出一个假说g,然后跟我
- Python数据挖掘与机器学习实践技术应用
思考的小猴子
机器学习遥感python数据挖掘机器学习
近年来,Python编程语言受到越来越多科研人员的喜爱,在多个编程语言排行榜中持续夺冠。同时,伴随着深度学习的快速发展,人工智能技术在各个领域中的应用越来越广泛。机器学习是人工智能的基础,因此,掌握常用机器学习算法的工作原理,并能够熟练运用Python建立实际的机器学习模型,是开展人工智能相关研究的前提和基础。掌握Python编程的基础知识与技巧、特征工程(数据清洗、变量降维、特征选择、群优化算法
- Weka 分类树输出结果解析 Weighted.avg
deer(écho)
MachineLearning分类数据挖掘人工智能
本文是对weka分类树的结果解释,集合了其它的博文我们使用的是weka自带的weather数据库先看左侧,classifier是分类方法,J48是递归分治策略;cross-validation表示交叉验证,使用了10-Foldspercentagesplit表示分割比例,用以分割训练集和测试集(猜的)再看看output,yes(9/3)(5/2)表示训练集里3个no,测试集里2个no(猜的x2)其
- 学习笔记:数据挖掘与机器学习
howard2005
数据挖掘基础学习笔记数据挖掘
文章目录一、数据挖掘、机器学习、深度学习的区别(一)数据挖掘(二)机器学习(三)深度学习(四)总结二、数据挖掘体系三、数据挖掘的流程四、典型的数据挖掘系统一、数据挖掘、机器学习、深度学习的区别(一)数据挖掘数据挖掘,或者说DataMining,是一个涵盖广泛且充满活力的学术领域,其核心目标在于揭示隐藏在海量数据背后的有价值信息和知识。这一过程涵盖了多种方法和技术,包括但不限于商业智能(BI)、统计
- 【机器学习】liblinear库使用说明(翻译)
十年一梦实验室
机器学习人工智能
LIBLINEAR是一个简单的软件包,用于解决大规模正则化线性分类、回归和异常检测问题。它目前支持以下方法:L2-正则化逻辑回归/L2-损失支持向量分类/L1-损失支持向量分类L1-正则化L2-损失支持向量分类/L1-正则化逻辑回归L2-正则化L2-损失支持向量回归/L1-损失支持向量回归单类支持向量机。本文档介绍了LIBLINEAR的使用方法。要开始使用,请先阅读快速入门''部分。对于开发者,请
- 大数据和智能数据应用架构系列教程之:大数据挖掘与机器学习
禅与计算机程序设计艺术
AI实战大数据AI人工智能Python实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍大数据概述2006年,Google推出了GoogleMap,2009年推出了Google搜索引擎,2012年发布的谷歌雅虎成为了互联网公司里面的霸主。到今日,谷歌已经成为最大的搜索引擎网站,其搜索结果量也超过一千亿。在这个过程中产生的数据也越来越多,这些数据的价值正在被更多的人所认识、重视和关注。如今,信息爆炸的时代已经过去,收集、处理、分析海量数据已成为人
- 日撸java_day66-68
luv_x_c
java算法
文章目录主动学习ALEC代码运行结果主动学习ALEC代码packagemachineLearning.activelearning;importweka.core.Instances;importjava.io.FileReader;importjava.io.IOException;importjava.util.Arrays;/***ClassName:Alec*Package:machine
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement