- 20250725题解
关注我立刻回关
算法
首页排名提交记录题目列表测试比赛教师频道正版书籍关于1267:【例9.11】01背包问题时间限制:1000ms内存限制:65536KB提交数:71918通过数:43491【题目描述】一个旅行者有一个最多能装MM公斤的背包,现在有nn件物品,它们的重量分别是W1,W2,...,WnW1,W2,...,Wn,它们的价值分别为C1,C2,...,CnC1,C2,...,Cn,求旅行者能获得最大总价值。【
- Shusen Wang推荐系统学习 --召回 ItemCF
我.佛.糍.粑
学习深度学习人工智能推荐算法
学习b站up主ShusenWang的推荐系统基于物品的协同过滤(ItrmCF)中心思想就是,如果你喜欢a,b,c三件商品,d商品与abc相似,那么你也可能喜欢d商品对此就要计算物品的相似程度物品相似度物品相似度的思想是,一个物品的相同用户很多就意味着这两件物品是相似的sim(i1,i2):=∣V∣∣W1∣∣W2∣sim(i_{1},i_{2}):={\frac{\big|\mathcal{V}\b
- 编译器警告(级别1) C4172 返回局部变量或临时对象的地址
返回局部变量或临时对象的地址一个函数返回局部变量或临时对象的地址。当函数返回时,局部变量和临时对象被销毁,所以返回的地址是无效的。需要重新设计函数,使其不返回局部对象的地址。下面的示例会生成C4172警告://C4172.cpp//compilewith:/W1/LDfloatf=10;constdouble&bar(){//trythefollowinglineinstead//constflo
- 数据结构——图的遍历之深度优先遍历(DFS算法)_全世界最可爱的王小帅_CSDN博客
全世界最可爱的王小帅
数据结构图论算法cppc#
数据结构——图的遍历之深度优先遍历图的遍历一般分为深度优先遍历和广度优先遍历下面我们要说的是深度优先遍历**(DFS算法)**1,我们首先选择一个顶点作为起始点,假设我们选择顶点v作为起始点,首先访问v,然后找v的邻接点,访问v的一个还未被访问过邻接点w1,2,再以w1为起始点,然后去找w1的邻接点,访问w1的一个还未被访问过的邻接点w2,再以w2作为起始点继续往下访问…3,如果我们访问到一个顶点
- 神经网络全景图:五大核心架构详解与本质区别
摘取一颗天上星️
深度学习神经网络人工智能深度学习
在人工智能的进化史上,神经网络如同分形生长的生命体,不断分化出适应不同任务的专用结构。本文将深入解析五大核心神经网络架构,揭示其设计哲学与应用边界。一、前馈神经网络(FNN):万物起源的基石结构特点:严格的单向信息流(输入层→隐藏层→输出层),无循环连接输入层隐藏层1隐藏层2输出层数学本质:y=σ(W2⋅σ(W1⋅x+b1)+b2)y=\sigma(W_2\cdot\sigma(W_1\cdotx
- 语言模型的评估指标-Perplexity
净心净意
自然语言处理自然语言处理
前言语言模型是什么呢?标准定义:对于语言序列w1,w2,...,wnw_1,w_2,...,w_nw1,w2,...,wn,语言模型就是计算该序列的概率,即P(w1,w2,...,wn)P(w_1,w_2,...,w_n)P(w1,w2,...,wn)。通俗解释:判断一句话是不是我们正常说的话,即是不是人话。如P(我,打,篮球)>P(篮球,打,我)。那么怎样评估语言模型好坏呢?这里介绍一个评估指标
- 线性回归讲解L1和L2正则化
XiaoQiong.Zhang
Datamining人工智能机器学习数据挖掘
假设我们有一个线性回归问题:用房屋的面积(size)和房龄(age)两个特征来预测房价(price)。特征:size(面积,平方米),age(房龄,年)目标:price(价格,万元)1.没有正则化的普通线性回归(最容易过拟合)模型的公式是:预测价格=w1*size+w2*age+b其中w1和w2是我们要学习的权重(也叫系数),b是偏置项(也叫截距)。模型的损失函数通常是最小均方误差:MSE=(1/
- 【中等】AcWing3417. ——砝码称重
CCF_NOI.
信息学奥赛C++STL标准库算法数据结构
见:https://www.acwing.com/problem/content/3420/你有一架天平和NN个砝码,这NN个砝码重量依次是W1,W2,⋅⋅⋅,WNW1,W2,···,WN。请你计算一共可以称出多少种不同的正整数重量?注意砝码可以放在天平两边。输入格式输入的第一行包含一个整数NN。第二行包含NN个整数:W1,W2,W3,⋅⋅⋅,WNW1,W2,W3,···,WN。输出格式输出一个整
- 5.28 孔老师 nlp讲座
柠石榴
自然语言处理人工智能
本次讲座主要介绍了语言模型的起源、预训练模型以及大语言模型(需要闫老师后讲)等内容。首先,语言模型的起源可以追溯到语音识别中的统计语言模型,通过估计声学参数串产生文字串的概率来找到最大概率的文字串。然后,介绍了语言模型的基本概念,即给定一个文字串S,用P(w1,w2,…,WN)表示其概率。最后,提到了预训练模型在大语言模型中的应用,以及如何在语料库中解决条件概率稀疏的问题。1语言模型与条件概率估计
- 机器学习第二十二讲:感知机 → 模仿大脑神经元的开关系统
kovlistudio
机器学习人工智能技术机器学习人工智能
机器学习第二十二讲:感知机→模仿大脑神经元的开关系统资料取自《零基础学机器学习》。查看总目录:学习大纲关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeekR1本地与线上满血版部署:超详细手把手指南感知机详解:模仿生物神经元的智能开关[^9-1]感知机是最简单的神经网络单元,相当于数字电路中的与门,能够根据输入条件自动触发判断结果。通过"买冰淇淋的家庭决策"案例来理解:权重w1=
- 困惑度(Perplexity)
彬彬侠
自然语言处理基础困惑度PerplexityPyTorchPythonNLP自然语言处理
困惑度(Perplexity)1.定义困惑度(Perplexity,简称PP)是自然语言处理(NLP)中评估语言模型性能的一种常见度量。它反映了语言模型对给定文本的预测能力。简而言之,困惑度是语言模型对文本的“不确定性”或“混乱度”的度量,数值越低,说明模型对文本的预测能力越强。对于一个给定的序列,困惑度的计算公式为:PP(W)=P(w1,w2,...,wN)−1N=2H(p)PP(W)=P(w_
- ChatGPT与DeepSeek技术对比:架构、性能与场景的范式转移
张家铭02
人工智能chatgpt架构人工智能
一、技术架构的哲学分野基础模型架构ChatGPT:延续GPT系列的单向自回归语言模型架构,基于TransformerDecoder堆叠,通过自注意力机制实现序列生成,其第tt步的隐状态计算为:ht=TransformerDecoder(w1:t−1,ΘGPT)ht=TransformerDecoder(w1:t−1,ΘGPT)其中ΘGPTΘGPT包含1750亿参数(GPT-4达万亿级),通过大规模
- 李沐08线性回归和基础算法优化——自学笔记
Rrrrrr900
算法线性回归笔记pytorch深度学习机器学习python
线性回归简化模型输入、权重、偏差、输出给定n维输入:x=[x1,x2,…,xn]^T线性模型有一个n维权重和一个标量偏差:w=[w1,w2,…,wn]^T,b输出是输入的加权和:y=w1x1+w2x2+…+wnxn+b向量版:y=+b平方损失:比较真实值和预估值假设y是真实值,y^是估计值l(y,y)=0.5*(y-y)^2训练数据:收集一些数据点来决定参数值(权重和偏差,过去的值)训练数据通常越
- 神经网络笔记 - 感知机
我还没秃,还能学
神经网络笔记人工智能
一感知机是什么感知机(Perceptron)是一种接收输入信号并输出结果的算法。它根据输入与权重的加权和是否超过某个阈值(threshold),来判断输出0还是1。二.计算方式感知机的基本公式如下:X1,X2:输入W1,W1:权重θ:阈值输出:0or1三.简单逻辑门的实现逻辑门简介感知机可以模拟如下基本逻辑门:输入1输入2AND门输出NAND门输出OR门输出00010100110101111101
- 注意力机制
code 旭
AI人工智能学习python人工智能
实现了Bahdanau式加法注意力的核心计算逻辑。以下是三个线性层设计的完整技术解析:一、数学公式推导注意力分数计算流程:score(hdec,henc)=vT⋅tanh(W1⋅henc+W2⋅hdec)score(h_{dec},h_{enc})=v^T\cdot\tanh(W1\cdoth_{enc}+W2\cdoth_{dec})score(hdec,henc)=vT⋅tanh(W1⋅he
- 01背包问题及其应用
Android_chunhui
leetcode题解
01背包问题有n个重量为w1,w2,w3…的物品,价值分别为v1,v2,v3…,现有一个容量为C的背包,问在不超过背包容量的条件下,所装物品的最大价值是多少?这个问题有两个变量,分别为物品总数n,背包容量C。记F(n,C)F(n,C)F(n
- RNN,LTSM和GRU原理
thormas1996
深度学习RNNLSTMGRU
(一)tensorflow入门笔记(二)RNN,LSTM和GRU原理(三)attention机制(四)seq2seq实例详解##RNNRNN主要用来处理当样本是一定时间序列的情况,例如一段语音,一串文本等等。这类任务如果用CNN处理,很难反映出其时间上的特征原理Figure1.RNNStructure时间为t时,输入为x(t),隐藏层为h(t),输出为y(t),图中w1,w2,w3为共享的权重。向
- 如何快速理解模糊PID---(二)
Invinciblenuonuo
STM32算法
模糊控制规则上文只介绍了误差这一个输入量,我们可以用相同的方法对误差的变化率这一输入量进行模糊化。模糊控制规则主要有两种,Mamdini和T-S型模糊控制器这里只介绍Mamdini型模糊控制器Mamdini型模糊控制器就是一堆“如果x是U1y是U2那么z是W1”的语句组成先上图设误差为E,误差的变化率为EC,而输出量我们也用上文的方法将他划分出六个区域,并规定出它的模糊论域(NB,NM,NS,Z0
- 关于误差平面小记
文弱_书生
乱七八糟平面算法神经网络机器学习
四维曲面的二维切片:误差平面详解在深度学习优化过程中,我们通常研究损失函数(LossFunction)的变化,试图找到权重的最优配置。由于神经网络的参数空间通常是高维的,我们需要使用低维可视化的方法来理解优化过程和误差平面(ErrorSurface)。在这里,我们讨论一个四维曲面的二维切片,其中:三个维度是网络的权重(w1,w2,w3w_1,w_2,w_3w1,w2,w3)。第四个维度是误差(损失
- 【无标题】大模型智能涌现的数学本质与底层机制
调皮的芋头
AI编程神经网络人工智能机器学习AIGC
大模型智能涌现的数学本质与底层机制一、语言建模的数学基础大模型的核心任务是基于概率链式法则建模语言序列:P(w1,...,wn)=∏t=1nP(wt∣w10^{11})时出现能力相变相变示例:参数量级涌现能力数学机制10^9基础语法低维流形建模10^11多步推理高维空间路径积分10^13跨模态类比抽象概念解纠缠五、知识压缩的代数结构张量分解视角:模型权重矩阵(W\in\mathbb{R}^{d×d
- Starlink卫星动力学系统仿真建模第十讲-基于SMC和四元数的卫星姿态控制示例及Python实现
瓦力的狗腿子
python开发语言算法
基于四元数与滑模控制的卫星姿态控制一、基本原理1.四元数姿态表示四元数运动学方程:3.滑模控制设计二、代码实现(Python)1.四元数运算工具importnumpyasnpdefquat_mult(q1,q2):"""四元数乘法"""w1,x1,y1,z1=q1w2,x2,y2,z2=q2w=w1*w2-x1*x2-y1*y2-z1*z2x=w1*x2+x1*w2+y1*z2-z1*y2y=w1
- 头歌实训作业 算法设计与分析-动态规划(第1关:0/1背包问题)
Milk夜雨
头歌实训作业算法动态规划
任务描述求解0/1背包问题。问题描述有n个重量分别为{w1,w2,…,wn}的物品,它们的价值分别为{v1,v2,…,vn},给定一个容量为W的背包。设计从这些物品中选取一部分物品放入该背包的方案,每个物品要么选中要么不选中,要求选中的物品不仅能够放到背包中,而且重量和为W,并具有最大的价值。测试说明测试输入:第一行为2个整数,分别表示物品数量n(1≤n≤20)和背包容量W(1≤W≤10000)。
- Qt Widget开发学习笔记3:信号与槽
pengisgod
Qt与其他编程语言或则软件开发套间在线程上的使用上有很大的不同。Qt使用了一种叫信号与槽的机制(技术),拓展了程序块之间的事件触发方式。一种典型的使用方式是用于子窗口和父窗口的信息传递。假设主窗口W1和它的一个子窗口W2,如果说W2中发生了某件事,而根据逻辑需要改变主窗口的某些属性,一种典型的处理方式是获取父窗口指针进行修改,那如果要修改爷爷窗口呢?如果要修改叔叔窗口呢?这个时候就凸显出信号与槽机
- 线性回归原理与python实现
o0Orange
python线性回归算法
线性回归原理:在一堆散点中xiyi,拟合出一个函数使其离所有点最近目标函数:y=w1x+w0误差函数:MSE(均方误差)L(w1,w0)=Σ(yi-y)^2优化方法:梯度下降,autograd,反向传播,优化公式,进行更新公式更新:wt+1=wt-dL/dwt*δ乘积的意义:将梯度乘以学习率,得到的结果是参数更新的大小。如果梯度较大,乘以一个较小的学习率可以使参数更新的幅度减小,保持在一个合理的范
- [蓝桥杯2021初赛] 砝码称重
%xiao Q
蓝桥蓝桥杯深度优先c++
题目题目描述你有一架天平和N个砝码,这N个砝码重量依次是W1,W2,…,WN。请你计算一共可以称出多少种不同的重量?注意砝码可以放在天平两边。输入格式输入的第一行包含一个整数N。第二行包含N个整数:W1,W2,W3,…,WN。对于50%的评测用例,1≤N≤15。对于所有评测用例,1≤N≤100,N个砝码总重不超过100000。输出格式输出一个整数代表答案。输入样例3146输出样例10分析这道题暴力
- Peter算法小课堂—背包问题
Peter Pan was right
算法
我们已经学过好久好久的动态规划了,动态规划_PeterPanwasright的博客-CSDN博客那么,我用一张图片来概括一下背包问题。大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西。01背包题目:小偷来你家,他带的包只能装c斤的财务。你家有n种财务,分别重w1、w2......wn斤,价值分别为v1、v2......,请输出能拿走的最大总价值?大家思考一下状态定义和
- 玖玖酱的成长复盘-2022年3月w1周复盘
玖玖酱知识可视化
这周从个人成长、身体健康、朋友关系、休闲娱乐四个方面进行复盘。1.个人成长方面☘️事:成就1:输出关于家庭教育的笔记大纲笔记6篇,导图5张;还输出一次成长思考1次,以及清单1张。成就2:开了公众号。我们精进社群真的太棒了,经常能跟着大家学习到新的认知。比如上周经过大家在群里的讨论,我意识到,发在朋友圈的内容,不容易搜索和沉淀,所以开了公众号。然而排版,真的是个比较麻烦的事情,发第一篇公众号的时候,
- 2 月 6 日算法练习- 动态规划
小蒋的学习笔记
算法算法动态规划
砝码承重【问题描述】你有一架天平和N个砝码,这N个砝码重量依次是W1,W2,...,WN。请你计算一共可以称出多少种不同的正整数重量?注意砝码可以放在天平两边。【输入格式】输入的第一行包含一个整数N。第二行包含N个整数:W1,W2,W3,...,WN。【输出格式】输出一个整数代表答案。【样例输入】3146【输出样例】10【样例说明】能称出的10种重量是:1、2、3、4、5、6、7、9、10、11。
- 题目 2604: 蓝桥杯2021年第十二届省赛真题-砝码称重
不想上课的hh
蓝桥杯往届真题详解蓝桥杯动态规划c++算法c语言
时间限制:1Sec内存限制:128MB提交:679解决:226题目描述你有一架天平和N个砝码,这N个砝码重量依次是W1,W2,···,WN。请你计算一共可以称出多少种不同的重量?注意砝码可以放在天平两边。输入输入的第一行包含一个整数N。第二行包含N个整数:W1,W2,W3,···,WN。输出输出一个整数代表答案。样例输入复制3146样例输出复制10提示【样例说明】能称出的10种重量是:1、2、3、
- 背包问题(01背包、完全背包、多重背包)详解(超详细!!!),及题目代码和题意,包含6个例题。
Edge_Coduck_S07738
算法c++
第一题:01背包问题01背包问题时间限制:1秒内存限制:128M题目描述一个旅行者有一个最多能装M公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn,求旅行者能获得最大总价值。输入描述第一行:两个整数,M(背包容量,M≤200)和N(物品数量,N≤30);第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。输出描述仅一行,
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi