每个单独的python文件都是一个单独的模块(module),可以被导入。
包含了__init__文件的目录是一个包,里面包含了多个模块,可以被导入。
import 语句
想使用 Python 源文件,只需在另一个源文件里执行 import 语句,语法如下:
import module1[, module2[,... moduleN]
当解释器遇到 import 语句,如果模块在当前的搜索路径就会被导入。
搜索路径是一个解释器会先进行搜索的所有目录的列表。如想要导入模块 support,需要把命令放在脚本的顶端:
support.py 文件代码
#!/usr/bin/python3
# Filename: support.py
def print_func( par ):
print ("Hello : ", par)
return
test.py 引入 support 模块, test.py 文件代码
#!/usr/bin/python3
# Filename: test.py
# 导入模块
import support
# 现在可以调用模块里包含的函数了
support.print_func("Runoob")
#输出结果:
$ python3 test.py
Hello : Runoob
一个模块只会被导入一次,不管你执行了多少次import。这样可以防止导入模块被一遍又一遍地执行。
当我们使用import语句的时候,Python解释器是怎样找到对应的文件的呢?
这就涉及到Python的搜索路径,搜索路径是由一系列目录名组成的,Python解释器就依次从这些目录中去寻找所引入的模块。
这看起来很像环境变量,事实上,也可以通过定义环境变量的方式来确定搜索路径。
搜索路径是在Python编译或安装的时候确定的,安装新的库应该也会修改。搜索路径被存储在sys模块中的path变量,做一个简单的实验,在交互式解释器中,输入以下代码:
>>> import sys
>>> sys.path
['', '/usr/lib/python3.4', '/usr/lib/python3.4/plat-x86_64-linux-gnu', '/usr/lib/python3.4/lib-dynload', '/usr/local/lib/python3.4/dist-packages', '/usr/lib/python3/dist-packages']
>>>
sys.path 输出是一个列表,其中第一项是空串'',代表当前目录(若是从一个脚本中打印出来的话,可以更清楚地看出是哪个目录),亦即我们执行python解释器的目录(对于脚本的话就是运行的脚本所在的目录)。
因此若像我一样在当前目录下存在与要引入模块同名的文件,就会把要引入的模块屏蔽掉。
了解了搜索路径的概念,就可以在脚本中修改sys.path来引入一些不在搜索路径中的模块。
现在,在解释器的当前目录或者 sys.path 中的一个目录里面来创建一个fibo.py的文件,代码如下:
# 斐波那契(fibonacci)数列模块
# fibo.py
def fib(n): # 定义到 n 的斐波那契数列
a, b = 0, 1
while b < n:
print(b, end=' ')
a, b = b, a+b
print()
def fib2(n): # 返回到 n 的斐波那契数列
result = []
a, b = 0, 1
while b < n:
result.append(b)
a, b = b, a+b
return result
#然后进入Python解释器,使用下面的命令导入这个模块:
>>> import fibo
这样做并没有把直接定义在fibo中的函数名称写入到当前符号表里,只是把模块fibo的名字写到了那里。
可以使用模块名称来访问函数:
>>>fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'
#如果你打算经常使用一个函数,你可以把它赋给一个本地的名称:
>>> fib = fibo.fib
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
注意:对于同一个目录下面,并列的文件来说,可以直接import对应文件名导入其中的模块
from … import 语句
Python 的 from 语句让你从模块中导入一个指定的部分到当前命名空间中,语法如下:
from modname import name1[, name2[, ... nameN]]
例如,要导入模块 fibo 的 fib 函数,使用如下语句:
>>> from fibo import fib, fib2
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377
这个声明不会把整个fibo模块导入到当前的命名空间中,它只会将fibo里的fib函数引入进来。
from … import * 语句
把一个模块的所有内容全都导入到当前的命名空间也是可行的,只需使用如下声明:
from modname import *
这提供了一个简单的方法来导入一个模块中的所有项目。然而这种声明不该被过多地使用。这将把所有的名字都导入进来,但是那些由单一下划线(_)开头的名字不在此例。大多数情况, Python程序员不使用这种方法,因为引入的其它来源的命名,很可能覆盖了已有的定义。
from __future__ import
要直接把代码升级到3.x是比较冒进的,因为有大量的改动需要测试。相反,可以在2.7版本中先在一部分代码中测试一些3.x的特性,如果没有问题,再移植到3.x不迟。
Python提供了__future__模块,把下一个新版本的特性导入到当前版本,于是我们就可以在当前版本中测试一些新版本的特性。举例说明如下:
为了适应Python 3.x的新的字符串的表示方法,在2.7版本的代码中,可以通过unicode_literals来使用Python 3.x的新的语法:
# still running on Python 2.7
from __future__ import unicode_literals
print '\'xxx\' is unicode?', isinstance('xxx', unicode)
print 'u\'xxx\' is unicode?', isinstance(u'xxx', unicode)
print '\'xxx\' is str?', isinstance('xxx', str)
print 'b\'xxx\' is str?', isinstance(b'xxx', str)
dynamic import
动态import有两种:
- 就是在函数或者类内部,使用import。 比如import pands(但按照PEP8的规范,所有的import建议放在文件开头)
- 真正的动态的导入。使用场景不多,比如模块名称只有在运行时才能确定,所以需要动态导入
方法:
- 使用importlib.import_module()
- 使用__import__魔术方法
test.py
#方法一
import importlib
aa = importlib.import_module('aa') #如果aa在目录demo里面,则为importlib.import_module('demo.aa')
c = aa.c()
print(c)
#方法二
lib = __import__('aa') # 相当于import aa, 如果aa在目录demo里面,则为__import__('demo.aa')
c = aa.c()
print(c)
aa.py跟test.py位于同一级目录,文件内容如下
def c():
return('hello from c()')
__name__属性
一个模块被另一个程序第一次引入时,其主程序将运行。如果我们想在模块被引入时,模块中的某一程序块不执行,我们可以用__name__属性来使该程序块仅在该模块自身运行时执行。
#!/usr/bin/python3
# Filename: using_name.py
if __name__ == '__main__':
print('程序自身在运行')
else:
print('我来自另一模块')
#运行输出如下:
$ python using_name.py
程序自身在运行
$ python
>>> import using_name
我来自另一模块
>>>
说明: 每个模块都有一个__name__属性,当其值是'main'时,表明该模块自身在运行,否则是被引入。
说明:__name__ 与 __main__ 底下是双下划线, _ _ 是这样去掉中间的那个空格。
dir() 函数
内置的函数 dir() 可以找到模块内定义的所有名称。以一个字符串列表的形式返回:
>>> import fibo, sys
>>> dir(fibo)
['__name__', 'fib', 'fib2']
>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__loader__', '__name__',
'__package__', '__stderr__', '__stdin__', '__stdout__',
'_clear_type_cache', '_current_frames', '_debugmallocstats', '_getframe',
'_home', '_mercurial', '_xoptions', 'abiflags', 'api_version', 'argv',
'base_exec_prefix', 'base_prefix', 'builtin_module_names', 'byteorder',
'call_tracing', 'callstats', 'copyright', 'displayhook',
'dont_write_bytecode', 'exc_info', 'excepthook', 'exec_prefix',
'executable', 'exit', 'flags', 'float_info', 'float_repr_style',
'getcheckinterval', 'getdefaultencoding', 'getdlopenflags',
'getfilesystemencoding', 'getobjects', 'getprofile', 'getrecursionlimit',
'getrefcount', 'getsizeof', 'getswitchinterval', 'gettotalrefcount',
'gettrace', 'hash_info', 'hexversion', 'implementation', 'int_info',
'intern', 'maxsize', 'maxunicode', 'meta_path', 'modules', 'path',
'path_hooks', 'path_importer_cache', 'platform', 'prefix', 'ps1',
'setcheckinterval', 'setdlopenflags', 'setprofile', 'setrecursionlimit',
'setswitchinterval', 'settrace', 'stderr', 'stdin', 'stdout',
'thread_info', 'version', 'version_info', 'warnoptions']
如果没有给定参数,那么 dir() 函数会罗列出当前定义的所有名称:
>>> a = [1, 2, 3, 4, 5]
>>> import fibo
>>> fib = fibo.fib
>>> dir() # 得到一个当前模块中定义的属性列表
['__builtins__', '__name__', 'a', 'fib', 'fibo', 'sys']
>>> a = 5 # 建立一个新的变量 'a'
>>> dir()
['__builtins__', '__doc__', '__name__', 'a', 'sys']
>>>
>>> del a # 删除变量名a
>>>
>>> dir()
['__builtins__', '__doc__', '__name__', 'sys']
>>>
包
包是一种管理 Python 模块命名空间的形式,采用"点模块名称"。
比如一个模块的名称是 A.B, 那么他表示一个包 A中的子模块 B 。
就好像使用模块的时候,你不用担心不同模块之间的全局变量相互影响一样,采用点模块名称这种形式也不用担心不同库之间的模块重名的情况。
这样不同的作者都可以提供 NumPy 模块,或者是 Python 图形库。
不妨假设你想设计一套统一处理声音文件和数据的模块(或者称之为一个"包")。
现存很多种不同的音频文件格式(基本上都是通过后缀名区分的,例如: .wav,:file:.aiff,:file:.au,),所以你需要有一组不断增加的模块,用来在不同的格式之间转换。
并且针对这些音频数据,还有很多不同的操作(比如混音,添加回声,增加均衡器功能,创建人造立体声效果),所以你还需要一组怎么也写不完的模块来处理这些操作。
这里给出了一种可能的包结构(在分层的文件系统中):
sound/ 顶层包
__init__.py 初始化 sound 包
formats/ 文件格式转换子包
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...
effects/ 声音效果子包
__init__.py
echo.py
surround.py
reverse.py
...
filters/ filters 子包
__init__.py
equalizer.py
vocoder.py
karaoke.py
...
在导入一个包的时候,Python 会根据 sys.path 中的目录来寻找这个包中包含的子目录。
目录只有包含一个叫做 __init__.py 的文件才会被认作是一个包,主要是为了避免一些滥俗的名字(比如叫做 string)不小心的影响搜索路径中的有效模块。
最简单的情况,放一个空的 :file:__init__.py就可以了。当然这个文件中也可以包含一些初始化代码或者为(将在后面介绍的) __all__变量赋值。
用户可以每次只导入一个包里面的特定模块,比如:
import sound.effects.echo
这将会导入子模块:sound.effects.echo。 他必须使用全名去访问:
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)
还有一种导入子模块的方法是:
from sound.effects import echo
这同样会导入子模块: echo,并且他不需要那些冗长的前缀,所以他可以这样使用:
echo.echofilter(input, output, delay=0.7, atten=4)
还有一种变化就是直接导入一个函数或者变量:
from sound.effects.echo import echofilter
同样的,这种方法会导入子模块: echo,并且可以直接使用他的 echofilter() 函数:
echofilter(input, output, delay=0.7, atten=4)
注意当使用from package import item这种形式的时候,对应的item既可以是包里面的子模块(子包),或者包里面定义的其他名称,比如函数,类或者变量。
import语法会首先把item当作一个包定义的名称,如果没找到,再试图按照一个模块去导入。如果还没找到,恭喜,一个:exc:ImportError 异常被抛出了。
反之,如果使用形如import item.subitem.subsubitem这种导入形式,除了最后一项,都必须是包,而最后一项则可以是模块或者是包,但是不可以是类,函数或者变量的名字。
__init__.py
从上边的例子可以看出,__init__.py的主要作用是:
- Python中package的标识,不能删除
- 定义__all__用来定义模糊导入的范围,只能模糊导入__all__里列举的模块
- 编写Python代码(不建议在__init__中写python模块,可以在包中在创建另外的模块来写,尽量保证__init__.py简单)
下面的代码演示在__init__.py中初始化代码
#Root/
#Root/__init__.py
#Root/Pack1
#Root/Pack1/__init__.py
#Root/Pack1/Pack1Class.py
__all__ = ["Pack1Class","Init_AA"]
class Init_AA:
def __init__(self,name):
self.name = name
def Greeting(self):
print("Hello ",self.name)
#测试上述__init__.py
from Root.Pack1 import *
b = Init_AA("test")
b.Greeting()
从一个包中导入*
设想一下,如果我们使用 from sound.effects import *会发生什么?
Python 会进入文件系统,找到这个包里面所有的子模块,一个一个的把它们都导入进来。
但是很不幸,这个方法在 Windows平台上工作的就不是非常好,因为Windows是一个大小写不区分的系统。
在这类平台上,没有人敢担保一个叫做 ECHO.py 的文件导入为模块 echo 还是 Echo 甚至 ECHO。
(例如,Windows 95就很讨厌的把每一个文件的首字母大写显示)而且 DOS 的 8+3 命名规则对长模块名称的处理会把问题搞得更纠结。
为了解决这个问题,只能烦劳包作者提供一个精确的包的索引了。
导入语句遵循如下规则:如果包定义文件 __init__.py 存在一个叫做__all__ 的列表变量,那么在使用 from package import * 的时候就把这个列表中的所有名字作为包内容导入。
作为包的作者,可别忘了在更新包之后保证 __all__ 也更新了啊。你说我就不这么做,我就不使用导入*这种用法,好吧,没问题,谁让你是老板呢。这里有一个例子,在:file:sounds/effects/__init__.py中包含如下代码:
__all__ = ["echo", "surround", "reverse"]
这表示当你使用from sound.effects import *这种用法时,你只会导入包里面这三个子模块。
如果 __all__ 真的没有定义,那么使用from sound.effects import *这种语法的时候,就不会导入包 sound.effects 里的任何子模块。他只是把包sound.effects和它里面定义的所有内容导入进来(可能运行__init__.py里定义的初始化代码)。
这会把 __init__.py 里面定义的所有名字导入进来。并且他不会破坏掉我们在这句话之前导入的所有明确指定的模块。看下这部分代码:
import sound.effects.echo
import sound.effects.surround
from sound.effects import *
这个例子中,在执行from...import前,包sound.effects中的echo和surround模块都被导入到当前的命名空间中了。(当然如果定义了__all__就更没问题了)
通常我们并不主张使用*这种方法来导入模块,因为这种方法经常会导致代码的可读性降低。不过这样倒的确是可以省去不少敲键的功夫,而且一些模块都设计成了只能通过特定的方法导入。
记住,使用from Package import specific_submodule这种方法永远不会有错。事实上,这也是推荐的方法。除非是你要导入的子模块有可能和其他包的子模块重名。
如果在结构中包是一个子包(比如这个例子中对于包sound来说),而你又想导入兄弟包(同级别的包)你就得使用导入绝对的路径来导入。比如,如果模块sound.filters.vocoder 要使用包sound.effects中的模块echo,你就要写成 from sound.effects import echo。
相对导入和绝对导入Absolute vs Relative Imports
绝对导入的格式为 import A.B
或 from A import B
,相对导入格式为 from . import B
或 from ..A import B
,.代表当前模块,..代表上层模块,...代表上上层模块,依次类推。
在没有明确指定包结构的情况下,Python 是根据 __name__ 来决定一个模块在包中的结构的,如果是 __main__ 则它本身是顶层模块,没有包结构,如果是A.B.C 结构,那么顶层模块是 A。基本上遵循这样的原则:
如果是绝对导入,一个模块只能导入自身的子模块或和它的顶层模块同级别的模块及其子模块
如果是相对导入,一个模块必须有包结构且只能导入它的顶层模块内部的模块
如果一个模块被直接运行,则它自己为顶层模块,不存在层次结构,所以找不到其他的相对路径。
Python2.x 缺省为相对路径导入,Python3.x 缺省为绝对路径导入
。绝对导入可以避免导入子包覆盖掉标准库模块(由于名字相同,发生冲突)。如果在 Python2.x 中要默认使用绝对导入,可以在文件开头加入如下语句:
`from``__future__` `import``absolute_import`
from __future__ import absolute_import
这句 import 并不是指将所有的导入视为绝对导入,而是指禁用 implicit relative import(隐式相对导入), 但并不会禁掉 explicit relative import(显示相对导入)。
那么到底什么是隐式相对导入,什么又是显示的相对导入呢?我们来看一个例子,假设有如下包结构
thing
├── books
│ ├── adventure.py
│ ├── history.py
│ ├── horror.py
│ ├── __init__.py
│ └── lovestory.py
├── furniture
│ ├── armchair.py
│ ├── bench.py
│ ├── __init__.py
│ ├── screen.py
│ └── stool.py
└── __init__.py
那么如果在 stool 中引用 bench,则有如下几种方式:
import bench # 此为 implicit relative import
from . importbench # 此为 explicit relative import
from furniture import bench # 此为 absolute import
隐式相对就是没有告诉解释器相对于谁,但默认相对与当前模块;而显示相对则明确告诉解释器相对于谁来导入。以上导入方式的第三种,才是官方推荐的,第一种是官方强烈不推荐的,Python3 中已经被废弃,这种方式只能用于导入 path 中的模块。
相对与绝对仅针对包内导入而言
最后再次强调,相对导入与绝对导入仅针对于包内导入而言,要不然本文所讨论的内容就没有意义。所谓的包,就是包含 __init__.py 文件的目录,该文件在包导入时会被首先执行,该文件可以为空,也可以在其中加入任意合法的 Python 代码。
假如有两个模块 a.py 和 b.py 放在同一个目录下并且这个目录没有__init__文件,为什么能在 b.py 中 import a 呢?
这是因为这两个文件所在的目录不是一个包,那么每一个 python 文件都是一个独立的、可以直接被其他模块导入的模块,就像你导入标准库一样,它们不存在相对导入和绝对导入的问题。相对导入与绝对导入仅用于包内部。此时虽然不能用import,但可以用from import方式导入a中的方法。
from . import echo
from .. import formats
from ..filters import equalizer
无论是隐式的还是显式的相对导入都是从当前模块开始的。主模块的名字永远是"__main__",一个Python应用程序的主模块,应当总是使用绝对路径引用。
包还提供一个额外的属性__path__。这是一个目录列表,里面每一个包含的目录都有为这个包服务的__init.py,你得在其他__init__.py被执行前定义哦。可以修改这个变量,用来影响包含在包里面的模块和子包。
这个功能并不常用,一般用来扩展包里面的模块。
导入时的搜索路径
按以下次序搜索
- 系统变量目录
- 标准库(built-in module)
-
sys.path
所列的文件和目录中(当前程序目录和当前文件默认是不在sys.path中的)
Python在遍历已知的库文件目录过程中,如果见到一个.pth 文件,就会将文件中所记录的路径加入到 sys.path 设置中。
如果包内包外存在同名的模块,用户导入的都会是包外的模块。也就是说默认不会搜索程序主目录。
出现SystemError: Parent module '' not loaded, cannot perform relative import
错误一个原因为包内使用相对路径,改用python -m可解决
技巧
配置文件
配置文件内容和目录结构
#Root/
#Root/__init__.py
#Root/config.py
#Root/demo.py
#config.py
REDIS_HOST = 'localhost'
REDIS_PORT = 6379
读取配置文件
from Root.config import *
print(REDIS_PORT)
#输出
6379
import this
常用模块
时间相关模块,time, datetime
建议用datetime模块处理本地时间,而不是time模块
如果一定要用time模块,一般用它在UTC时间和电脑宿主计算机的当地时区之间进行转换。不要用time在不同时区之间进行转换。
开发者应该总是把时间转换成UTC格式,然后对其执行各种操作,再转换回本地时间。
import datetime
import time
# 日期时间字符串
st = "2017-11-23 16:10:10"
# 当前日期时间
dt = datetime.datetime.now()
# 当前时间戳
sp = time.time()
# 1.把datetime转成字符串
def datetime_toString(dt):
print("1.把datetime转成字符串: ", dt.strftime("%Y-%m-%d %H:%M:%S"))
# 2.把字符串转成datetime
def string_toDatetime(st):
print("2.把字符串转成datetime: ", datetime.datetime.strptime(st, "%Y-%m-%d %H:%M:%S"))
# 3.把字符串转成时间戳形式
def string_toTimestamp(st):
print("3.把字符串转成时间戳形式:", time.mktime(time.strptime(st, "%Y-%m-%d %H:%M:%S")))
# 4.把时间戳转成字符串形式
def timestamp_toString(sp):
print("4.把时间戳转成字符串形式: ", time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(sp)))
# 5.把datetime类型转外时间戳形式
def datetime_toTimestamp(dt):
print("5.把datetime类型转外时间戳形式:", time.mktime(dt.timetuple()))
# 1.把datetime转成字符串
datetime_toString(dt)
# 2.把字符串转成datetime
string_toDatetime(st)
# 3.把字符串转成时间戳形式
string_toTimestamp(st)
# 4.把时间戳转成字符串形式
timestamp_toString(sp)
# 5.把datetime类型转外时间戳形式
datetime_toTimestamp(dt)
print('----------------------')
#获取明天的时间戳
#方法一
today = time.time()
tomorrow = today + 86400
#方法二
today = datetime.datetime.today()
tomorrow = today + datetime.timedelt(days=1)
datetime.datetime.timetuple(today) #把当前时间按照time的struct_time的格式输出
today_timestamp = time.mktime(datetime.datetime.timetuple(today))
tomorrow_timestamp = time.mktime(datetime.datetime.timetuple(tomorrow))
#计算两个时间差
t1 = '2017-10-31 16:14:08'
t2 = '2017-08-26 10:04:12'
t11= datetime.datetime.strptime(t1, '%Y-%m-%d %H:%M:%S')
t22= datetime.datetime.strptime(t2, '%Y-%m-%d %H:%M:%S')