Source: Github - aahr1 / pdslasso
Stata连享会 计量专题 || 精品课程 || 推文 || 公众号合集
2020寒假Stata现场班 (北京, 1月8-17日,连玉君-江艇主讲),「+助教招聘」
Stata package: pdslasso
pdslasso
and ivlasso
are routines for estimating structural parameters in linear models with many controls and/or instruments. The routines use methods for estimating sparse high-dimensional models, specifically the lasso (Least Absolute Shrinkage and Selection Operator, Tibshirani 1996) and the square-root-lasso (Belloni et al. 2011, 2014).
These estimators are used to select controls (pdslasso
) and/or instruments (ivlasso
) from a large set of variables (possibly numbering more than the number of observations), in a setting where the researcher is interested in estimating the causal impact of one or more (possibly endogenous) causal variables of interest.
Two approaches are implemented in pdslasso
and ivlasso
:
- The post-double-selection methodology of Belloni et al. (2012, 2013, 2014, 2015, 2016).
- The post-regularization methodology of Chernozhukov, Hansen and Spindler (2015).
For instrumental variable estimation, `ivlasso implements weak-identification-robust hypothesis tests and confidence sets using the Chernozhukov et al. (2013) sup-score test.
The implemention of these methods in pdslasso
and ivlasso
require the Stata program rlasso
(available in the separate Stata module lassopack), which provides lasso and square root-lasso estimation with data-driven penalization.
Installation
To install the latest version from SSC, type
ssc install lassopack, replace
ssc install pdslasso, replace
Help files
For further information on pdslasso
and ivlasso
, type
help pdslasso
The help files contain more information about the implemented routines and examples.
Acknowledgements
Thanks to Sergio Correia for advice on the use of the FTOOLS package.
Citation
pdslasso
and ivlasso
are not official Stata commands. They are free contributions to the research community, like a paper.
Please cite it as such:
Ahrens, A., Hansen, C.B., Schaffer, M.E. 2018. pdslasso and ivlasso: Progams for post-selection and post-regularization OLS or IV estimation and inference. http://ideas.repec.org/c/boc/bocode/s458459.html
Authors
Achim Ahrens, Economic and Social Research Institute, Ireland
Christian B. Hansen, University of Chicago, USA
Mark E Schaffer, Heriot-Watt University, UK
Issues and questions
If you have encountered any issues with pdslasso, contact achim.ahrens(at)esri.ie and m.e.schaffer(at)hw.ac.uk. If you have questions about the use of pdslasso, contact us via Statalist.
关于我们
- Stata连享会 由中山大学连玉君老师团队创办,定期分享实证分析经验。
- 推文同步发布于 CSDN 、 和 知乎Stata专栏。可在百度中搜索关键词 「Stata连享会」查看往期推文。
- 点击推文底部【阅读原文】可以查看推文中的链接并下载相关资料。
- 欢迎赐稿: 欢迎赐稿。录用稿件达 三篇 以上,即可 免费 获得一期 Stata 现场培训资格。
- E-mail: [email protected]
- 往期精彩推文:一网打尽