redis是Nosql数据库中使用较为广泛的非关系型内存数据库,redis内部是一个key-value存储系统。redis基于内存运行并支持持久化的NoSql数据库,是当今最热门的NoSql数据库之一,也被称为数据结构服务器。1.主要是支持持久化 2.支持更多数据结构 3.支持主从同步
1. 当数据量的总大小一个机器放不下时。
2. 数据索引一个机器的内存放不下是。
3. 访问量(读写混合)一个实力放不下时
单机时代模型
如果每次存储成千上万条数据,这样会导致MySql的性能很差,存储和读取速度很慢,然后演变为:
缓存+mysql+垂直拆分方式
cache作为中间缓存,将所有的数据先保存到缓存中,然后在存入mysql中,减小数据库压力,提高效率。
但是当数据再次增加到一个量级,上面的方式也不能满足需求,由于数据库的写入压力增大,Memcached只能缓解数据库的读取压力。读写集中在一个数据库上让数据库不堪重负,大部分网站开始使用主从复制技术来达到读写分离,以提高读写性能和读库的可扩展性。然后形成了:
主从分离(master-slave)模式
在redis的告诉缓存,mysql的主从复制,读写分离的基础上,这时MySql主库的写压力开始出现瓶颈,而数据量的持续猛增,由于myISAM使用表锁,在高并发下会出现严重的锁问题,大量的高并发mysql应用开始使用InnoDB引擎代替MyISAM。然后形成了:
分表分库模式
将变化小的,业务相关的放在一个数据库,变化多的,不相关的放在一个数据库。
1. 易扩展
这些类型的数据存储不需要固定的模式,无需多余的操作就可以进行横向的扩展。相对于关系型数据库可以减少表和字段特别多的情况。在架构的层面上又可扩展的能力。
2. 大数据量性能高
3. 多样灵活的数据模型
在nosql中不仅可以存储string,hash,set,zset等数据类型,还可以保存javaBean以及多种复杂的数据类型。
1.存储方式
关系型数据库是表格式的,因此存储在表的行和列中。他们之间很容易关联协作存储,提取数据很方便。
非关系型数据库恰好与其相反,他是大块的组合在一起。通常存储在数据集中,就像文档,键值对或图结构。
2.存储结构
关系型数据库对应的是结构化数据,数据表都预先定义了结构(列的定义),结构描述了数据的形式和内容。这一点对数据建模至关重要,虽然预定义结构带来了可靠性和稳定性,但是修改结构就比较困难。
非关系型数据库基于动态结构,使用非结构化数据,很容易适应数据类型和结构的变化。
3.存储规范
关系型数据库的数据存储为了有更高的规范性,把数据分割为最小的关系表以避免重复,获得精简的空间利用。虽然管理起来很清晰,但是单个操作涉及到多张表的时候,数据管理就显得有点麻烦。
非关系型数据库数据存储在平面数据集中,数据经常可能会重复。单个数据库很少被分割开,而是存储为一个整体,整块数据便于读写。
4.存储扩展(最大区别)
关系型数据库是纵向扩展,也就是说要提高处理能力,要使用速度更快的计算机。因为数据存储在关系表中,操作的性能瓶颈可能涉及到多个表,需要通过提升计算机性能来克服。
非关系型数据库是横向扩展的,它的存储天然是分布式的,可以通过给资源池添加更多的普通数据库服务器来分担负载。
5.查询方式
关系型数据库通过结构化查询语言SQL来操作数据库,SQL支持数据库操作的功能非常强大。
非关系型数据库查询以块为单元操作数据,使用的非结构查询语言UnQI,它是没有标准的。关系型数据库表中主键的概念对应Nosql中存储文档的ID。关系型数据库使用预定义优化方式(如:索引)来加快查询操作,而Nosql更简单更精确的数据访问模式。
6.事务
关系型数据库遵循ACID规则(原子性(Atomicity),一致性(Consistency),隔离性(Isolation),持久性(Durability))。数据强一致性,所以对事务的支持很好。对事务原子性细腻度控制,并且易于回滚事务。
非关系型数据库遵循BASE规则(基本可以(Basically Availble),软/柔性事务(Soft-state),最终一致性(Eventual Consistency))。在CAP(一致性,可用性,分区容忍度)中任选两项,因为基于节点的分布式系统中,很难全部满足,所以对事务支持不是很好。
7.性能
关系型数据库为了维护数据的一致性付出了巨大的代价,读写性能比较差。在面对高并发读写性能非常差,面对海量数据时候效率非常低。
非关系型数据库格式都是key-value类型的,并且存储在内存中,非常容易存储,并且对于数据的一致性是弱要求。无需sql解析,提高了读写性能。
主要从两个角度去考虑:性能和并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。因此,这个问题主要从性能和并发两个角度去答。
1.性能
如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。
2.并发
如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。
题外话:我们现在要仔细的说一说I/O多路复用机制,因为这个说法实在是太通俗了,通俗到一般人都不懂是什么意思。博主打一个比方:小曲在S城开了一家快递店,负责同城快送服务。小曲因为资金限制,雇佣了一批快递员,然后小曲发现资金不够了,只够买一辆车送快递。
经营方式一
客户每送来一份快递,小曲就让一个快递员盯着,然后快递员开车去送快递。慢慢的小曲就发现了这种经营方式存在下述问题
几十个快递员基本上时间都花在了抢车上了,大部分快递员都处在闲置状态,谁抢到了车,谁就能去送快递
随着快递的增多,快递员也越来越多,小曲发现快递店里越来越挤,没办法雇佣新的快递员了
快递员之间的协调很花时间
综合上述缺点,小曲痛定思痛,提出了下面的经营方式
经营方式二
小曲只雇佣一个快递员。然后呢,客户送来的快递,小曲按送达地点标注好,然后依次放在一个地方。最后,那个快递员依次的去取快递,一次拿一个,然后开着车去送快递,送好了就回来拿下一个快递。
对比
上述两种经营方式对比,是不是明显觉得第二种,效率更高,更好呢。在上述比喻中:
每个快递员---------->每个线程
每个快递------------>每个socket(I/O流)
快递的送达地点------>socket的不同状态
客户送快递请求------>来自客户端的请求
小曲的经营方式------>服务端运行的代码
一辆车--------------->CPU的核数
于是我们有如下结论
1、经营方式一就是传统的并发模型,每个I/O流(快递)都有一个新的线程(快递员)管理。
2、经营方式二就是I/O多路复用。只有单个线程(一个快递员),通过跟踪每个I/O流的状态(每个快递的送达地点),来管理多个I/O流。
下面类比到真实的redis线程模型,如图所示
参照上图,简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。
(一)String
这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。
(二)hash
这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。
(三)list
使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。
(四)set
因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。
(五)sorted set
sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。sorted set可以用来做延时任务。最后一个应用就是可以做范围查找。
这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?
redis采用的是定期删除+惰性删除策略。
为什么不用定时删除策略?
定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.
定期删除+惰性删除是如何工作的呢?
定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。
于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。
采用定期删除+惰性删除就没其他问题了么?
不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。
在redis.conf中有一行配置 # maxmemory-policy volatile-lru 该配置就是配内存淘汰策略的.
1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。
2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。
3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。
4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐
5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐
6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐
ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。
一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。
首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。
缓存穿透: 即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。
解决方案:
(一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试
(二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。
(三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。
缓存雪崩: 即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。
解决方案:
(一)给缓存的失效时间,加上一个随机值,避免集体失效。
(二)使用互斥锁,但是该方案吞吐量明显下降了。
(三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点
I 从缓存A读数据库,有则直接返回
II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。
III 更新线程同时更新缓存A和缓存B。
这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。
(1)如果对这个key操作,不要求顺序
这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。
(2)如果对这个key操作,要求顺序
假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.
期望按照key1的value值按照 valueA-->valueB-->valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下
系统A key 1 {valueA 3:00}
系统B key 1 {valueB 3:05}
系统C key 1 {valueC 3:10}
那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。
其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。
所以,对于数据关系较为复杂,使用关系型数据库较好。对于某些关联较少,且读写频率高时,使用redis能很好提高整个系统性能。
End