- 遥感影像目标检测:从CNN(Faster-RCNN)到Transformer(DETR)
岁月如歌,青春不败
生态遥感目标检测cnntransformer遥感遥感影像
我国高分辨率对地观测系统重大专项已全面启动,高空间、高光谱、高时间分辨率和宽地面覆盖于一体的全球天空地一体化立体对地观测网逐步形成,将成为保障国家安全的基础性和战略性资源。未来10年全球每天获取的观测数据将超过10PB,遥感大数据时代已然来临。一:深度卷积网络知识1.深度学习在遥感图像识别中的范式和问题2.深度学习的历史发展历程3.机器学习,深度学习等任务的基本处理流程4.卷积神经网络的基本原理5
- 目标检测实践过程中,遇到“No module named ‘torch._six’”报错的一个快速解决方案(无需重装PyTorch)
Cold_Rain02
深度学习Python目标检测人工智能计算机视觉
很多人在按照网络、书籍教程中的流程尝试自己实现一个基于Faster-RCNN的目标检测模型时,如果调用了PyTorch官方github上的文件时,coco_eval.py文件中会触发报错。1.报错原因PyTorch在2.0之后的版本中移除了_six,导致在coco_eval.py中调用torch._six失败2.解决方案(1)直接根据代码内容修改代码我们仔细观察coco_eval.py的代码,发现
- c++读取图片_四、faster-rcnn源码阅读:数据流读取
weixin_39719078
c++读取图片img标签读取本地图片os如何读取图片torchdataloader数据并行
数据读取在faster-rcnn源码里是比较简单的部分,但也是非常重要的部分,不了解数据,就不可能了解算法。另一方面,由于python环境碎片话化,源码调用的库在你的电脑上如果碰巧(其实概率还蛮大,特别是windows下)不能用,完全可以用另外一种等价的方式取代。一、图片读取就是把图片转化成矩阵,等待下一个流程进一步处理。图片读取要注意不是所有都是RGB顺序读取1.cv2(OpenCV-Pytho
- Transformer实战-系列教程13:DETR 算法解读
机器学习杨卓越
Transformer实战transformer深度学习DETR物体检测
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码1、物体检测说到目标检测你能想到什么faster-rcnn系列,开山之作,各种proposal方法YOLO肯定也少不了,都是基于anchor这路子玩的NMS那也一定得用上,输出结果肯定要过滤一下的如果一个目标检测算法,上面这三点都木有,你说神不神
- 目标检测SSD:训练自己的数据集
BigCowPeking
目标检测算法安装SSD
最近一直在搞objectdetection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti,识别速度大概是15fps.最近发现SSD(singleshotmultiboxdetector)这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部
- YOLO系列
Array902
YOLOpython深度学习
深度学习经典检测方法two-stage(两阶段):Faster-rcnn\Mask-Rcnn系列(两阶段即多了一步预选操作)one-stage(单阶段):YOLO系列(直接处理,不需要对数据进行预选)one-stage:最核心的优势:速度非常快,适合做实时监测任务!但是缺点也是有的,效果通常情况下不会太好!(速度越快效果越差,二者相互有些矛盾)mAP:效果好坏FPS:速度快慢two-stage:速
- 目标检测 Faster-RCNN
石中璇
深度学习
文章目录标题目标检测算法:Faster-RCNNR-CNNRegionProposals候选区域RCNN结构原理RCNN存在的问题用SPP-Net改进(spatialpyramidpoolinglayer空间金字塔池化)FastR-CNNFastR-CNN结构图FastR-CNN的缺陷FasterR-CNN标题目标检测算法:Faster-RCNNR-CNNRegionProposals候选区域原先
- caffe版本Faster-RCNN:py-faster-rcnn-master/lib/datasets/factory.py ->用于集成程序默认提供的数据集
a1103688841
分析:这个代码分两个部分:1)首先往__sets()字典的key中注入名字,往对应的val中注入对应的初始化函数。下次只要在__sets()字典中输入key的名字就可以执行对应的初始化函数。__sets()的具体情况如下:2)get_imdb(name)用于配套__sets()的初始化,输入__sets()中存在key,调用他对应的val进行初始化list_imdbs()用于配套__sets(),
- Multi-adversarial Faster-RCNN with Paradigm Teacher for Unrestricted Object Detection
宇来风满楼
目标检测目标检测人工智能计算机视觉算法深度学习机器学习神经网络
GRLmeans‘gradientreversedlayer’,SRMmeans‘ScaleReduceModule’.DiscriminatorsubmoduleatthemmmthblockisdenotedasDm^mm作者未提供代码
- R-C3D论文详解
ce0b74704937
论文链接:R-C3D:RegionConvolutional3DNetworkforTemporalActivityDetection代码地址(论文提供地址):http://ai.bu.edu/r-c3d/该论文借鉴图像物体检测中的Faster-RCNN的思想,文章采用3D卷积来获取视频的时序信息,然后通过类似Faster-RCNN的rpn层和roi层输出时间维度的boundingbox,也就是视
- 【Digest】YOLO系列:YOLOv1,YOLOv2,YOLOv3,YOLOv4,YOLOv5简介
gikod
YOLO
1.前言论文下载:http://arxiv.org/abs/1506.02640代码下载:https://github.com/pjreddie/darknet核心思想:将整张图片作为网络的输入(类似于Faster-RCNN),直接在输出层对BBox的位置和类别进行回归。目标检测之YOLO算法:YOLOv1,YOLOv2,YOLOv3,TinyYOLO,YOLOv4,YOLOv5,YOLObile
- 学习笔记:Pytorch 搭建自己的Faster-RCNN目标检测平台
hongyuyahei
vqa学习笔记pytorch
B站学习视频up主的csdn博客1、什么是FasterR-CNN2、pytorch-gpu环境配置(跳过)3、FasterR-CNN整体结构介绍Faster-RCNN可以采用多种的主干特征提取网络,常用的有VGG,Resnet,Xception等等。Faster-RCNN对输入进来的图片尺寸没有固定,但一般会把输入进来的图片短边固定成600.4、Resnet50-主干特征提取网络介绍具体学习见:R
- MMdetection3.0 报错data[‘category_id‘] = self.cat_ids[label] IndexError: list index out of range
MZYYZT
MMdetectionpython深度学习MMdetection3.0
MMdetection3.0问题报错data[‘category_id’]=self.cat_ids[label]IndexError:listindexoutofrange痛苦,希望各位大佬看到后可以指教一下:问题:在使用MMdetection3.0训练NWPU-VHR-10数据时,使用Yolov3模型可以正常训练测试,但是当使用Faster-rcnn模型训练的时候,一直如下图所示错误。1、按照
- MMdetection3.0 问题
MZYYZT
MMdetectionpython目标检测MMdetection3.0python深度学习目标检测
MMdetection3.0问题希望各位路过的大佬指教一下:问题:1、NWPU-VHR-10有标注的数据一共650张,我将其分为了455张训练集,195张验证集。2、然后使用MMdetection3.0框架中的Faster-rcnn网络进行训练,设置训练参数batch-size=2,num_worker=2。3、那么问题来了:为什么下图中的画圈的地方不是【**/228or227】,也就是datal
- YOLO系列/20230903
lucharaar
YOLO
深度学习经典检测方法1.two-stage(分两阶段):Faster-Rcnn和Mask-Rcnn系列-------检测过程中加了预选框步骤速度通常较慢(5FPS),但是效果通常不错非常实用的通用框架Mask-Rcnn,需要了解2.one-stage(单阶段):YOLO系列------当我们想做检测任务,一个cnn网络直接做一个回归任务就可以,中间不需要加额外的补充最核心的优势:速度非常快,适合做
- 目标检测|实战总结
voice_an
1.实现ssd-keras实时目标检测算法,并制作十张图片的测试集。效果一般。ssd算法是继faster-rcnn与yolo之后的又一力作。来自UNC团队2016年发表在ECCV上。SSD最大的特点就是在较高的准确率下实现较好的检测准确度。并非为两种模型:SSD300(300*300输入图片),SSD500(512*512输入图片)。当然输入图片的尺寸越大,往往会得到更好的检测准确率,但同时也带来
- 第五章 目标检测中K-means聚类生成Anchor box(工具)
小酒馆燃着灯
目标检测深度学习工具目标检测kmeans聚类
基础理论在基于anchor的目标检测算法中,anchor一般都是通过人工设计的。例如,在SSD、Faster-RCNN中,设计了9个不同大小和宽高比的anchor。然而,通过人工设计的anchor存在一个弊端,就是并不能保证它们一定能很好的适合数据集,如果anchor的尺寸和目标的尺寸差异较大,则会影响模型的检测效果。在论文YOLOv2中提到了这个问题,作者建议使用K-means聚类来代替人工设计
- YOLO系列详解(YOLO1-YOLO5)
陈子迩
深度学习学习笔记pythonpandas机器学习
目录前言二、YOLOv1举例说明:三、YOLOv2四、YOLOv3五、YOLOv4框架原理5.4.5余弦模拟退火5.5.2DIoU-NMS六YOLOv5七、YOLOv6前言一、前言YOLO系列是one-stage且是基于深度学习的回归方法,而R-CNN、Fast-RCNN、Faster-RCNN等是two-stage且是基于深度学习的分类方法。YOLO官网:GitHub-pjreddie/dark
- pkl文件的简介(Python中的Pickle)
北岛寒沫
Pythonpython开发语言
文章目录Pickle模块简介Pickle模块的使用最近从Github上下载了一个预训练好的Faster-RCNN模型用于科研任务,突然对该文件的格式,.pkl文件产生了一丝疑惑,便去特意了解了一下该格式的文件的含义,下面与大家共享。Pickle模块简介.pkl是Python中pickle模块的默认文件扩展名。pickle是Python中的一个模块,它允许您序列化和反序列化Python对象结构。“序
- SSD安装及训练自己的数据集
zhang_shuai12
深度学习ssdcaffe
最近一直在搞objectdetection玩,之前用的是faster-rcnn,准确率方面73.2%,效果还不错,但是识别速度有点欠缺,我用的GPU是GTX980ti,识别速度大概是15fps.最近发现SSD(singleshotmultiboxdetector)这篇论文效果和速度都不错,我自己实验了一下,速度确实比faster-rcnn快不少。下面分两部分来介绍。第一部分介绍SSD的安装,第二部
- 在AI Studio中配置faster-rcnn pytorch环境
ForesterZz
cuda
在AIStudio中配置faster-rcnnpytorch环境AIStudio自带cuda版本faster-rcnn的pytorch版本支持AIStudio自带cuda版本AIStudio目前有两个版本的cuda(cuda9.2和cuda10),不过我从没分配到过cuda10,大部分都是cuda9.2。使用以下语句查看cuda版本。cat/usr/local/cuda/version.txtfa
- 使用mmdetection训练模型--记faster-rcnn不同backbone性能比较
hedgehogbb
工作总结深度学习目标检测pytorch
使用mmdetection训练模型一、安装采用的是直接安装,并未使用在conda中建虚拟环境。主要安装的有mmcv和mmdet,其中mmcv的安装与下载的mmdetction版本有关,参考https://mmdetection.readthedocs.io/zh_CN/v2.18.1/get_started.html#id官网安装依赖教程中的mmdetection版本和mmcv版本的对应关系安装。
- 基于Pytorch的从零开始的目标检测
金戈鐡馬
深度学习pytorch目标检测人工智能深度学习python
引言目标检测是计算机视觉中一个非常流行的任务,在这个任务中,给定一个图像,你预测图像中物体的包围盒(通常是矩形的),并且识别物体的类型。在这个图像中可能有多个对象,而且现在有各种先进的技术和框架来解决这个问题,例如Faster-RCNN和YOLOv3。本文讨论将讨论图像中只有一个感兴趣的对象的情况。这里的重点更多是关于如何读取图像及其边界框、调整大小和正确执行增强,而不是模型本身。目标是很好地掌握
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.78】引入2023年华为诺亚提出Gold-YOLO模型中Gatherand-Distribute
人工智能算法研究院
YOLO算法改进系列YOLO算法
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.79】改进损失函数为VariFocal Loss
人工智能算法研究院
YOLO算法改进系列YOLO算法目标跟踪
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- CV综述OCR任务---目录
慕一Chambers
图像分类CNN深度学习机器学习
CV综述OCR任务---目录图像任务OCR任务图像分类目标检测图像分割图像增强视频任务正文:OCR学习OCR参考资料:参考博客:典型应用常见挑战比赛经典OCR方法单字符识别方法序列识别方法tessernet文字检测模型Part(thinkaboutCV中的目标检测)faster-RCNN/YOLO/SSDCTPN(2016):ConnectionistTextProposalNetworkEAST
- 第五章 目标检测中K-means聚类生成Anchor box(工具)
小酒馆燃着灯
机器学习工具深度学习目标检测kmeans聚类
第一种做法在基于anchor的目标检测算法中,anchor一般都是通过人工设计的。例如,在SSD、Faster-RCNN中,设计了9个不同大小和宽高比的anchor。然而,通过人工设计的anchor存在一个弊端,就是并不能保证它们一定能很好的适合数据集,如果anchor的尺寸和目标的尺寸差异较大,则会影响模型的检测效果。在论文YOLOv2中提到了这个问题,作者建议使用K-means聚类来代替人工设
- YOLOv8/YOLOv7/YOLOv5/YOLOv4/Faster-rcnn系列算法改进【NO.77】引入百度最新提出RT-DETR模型中AIFI模块
人工智能算法研究院
YOLO算法改进系列YOLO算法目标跟踪
前言作为当前先进的深度学习目标检测算法YOLOv8,已经集合了大量的trick,但是还是有提高和改进的空间,针对具体应用场景下的检测难点,可以不同的改进方法。此后的系列文章,将重点对YOLOv8的如何改进进行详细的介绍,目的是为了给那些搞科研的同学需要创新点或者搞工程项目的朋友需要达到更好的效果提供自己的微薄帮助和参考。由于出到YOLOv8,YOLOv7、YOLOv5算法2020年至今已经涌现出大
- mmdetection安装与训练
不减到100斤不吃锅包肉
深度学习pytorch深度学习
一、什么是mmdetection商汤科技(2018COCO目标检测挑战赛冠军)和香港中文大学最近开源了一个基于Pytorch实现的深度学习目标检测工具箱mmdetection,支持Faster-RCNN,Mask-RCNN,Fast-RCNN等主流的目标检测框架,后续会加入Cascade-RCNN以及其他一系列目标检测框架。二、mmdetection安装本人安装环境:系统环境:Ubuntu20.0
- 安装yolo,mmlab,等工具时pycocotools报错
zRezin
YOLO深度学习人工智能计算机视觉
安装yolo的时候,因为是白板机,很多依赖都没有安装。安装yolo的依赖时候会报错。其实如果安装其他的视觉框架,例如yolov系列,mmlab,faster-rcnn等只要是用到了coco数据集的预置框架,都需要安装pycocotools。conda环境下依赖安装可能报错,可能是因为环境版本不匹配。需要手动安装报错语句如下ERROR:Couldnotbuildwheelsforpycocotool
- redis学习笔记——不仅仅是存取数据
Everyday都不同
returnSourceexpire/delincr/lpush数据库分区redis
最近项目中用到比较多redis,感觉之前对它一直局限于get/set数据的层面。其实作为一个强大的NoSql数据库产品,如果好好利用它,会带来很多意想不到的效果。(因为我搞java,所以就从jedis的角度来补充一点东西吧。PS:不一定全,只是个人理解,不喜勿喷)
1、关于JedisPool.returnSource(Jedis jeids)
这个方法是从red
- SQL性能优化-持续更新中。。。。。。
atongyeye
oraclesql
1 通过ROWID访问表--索引
你可以采用基于ROWID的访问方式情况,提高访问表的效率, , ROWID包含了表中记录的物理位置信息..ORACLE采用索引(INDEX)实现了数据和存放数据的物理位置(ROWID)之间的联系. 通常索引提供了快速访问ROWID的方法,因此那些基于索引列的查询就可以得到性能上的提高.
2 共享SQL语句--相同的sql放入缓存
3 选择最有效率的表
- [JAVA语言]JAVA虚拟机对底层硬件的操控还不完善
comsci
JAVA虚拟机
如果我们用汇编语言编写一个直接读写CPU寄存器的代码段,然后利用这个代码段去控制被操作系统屏蔽的硬件资源,这对于JVM虚拟机显然是不合法的,对操作系统来讲,这样也是不合法的,但是如果是一个工程项目的确需要这样做,合同已经签了,我们又不能够这样做,怎么办呢? 那么一个精通汇编语言的那种X客,是否在这个时候就会发生某种至关重要的作用呢?
&n
- lvs- real
男人50
LVS
#!/bin/bash
#
# Script to start LVS DR real server.
# description: LVS DR real server
#
#. /etc/rc.d/init.d/functions
VIP=10.10.6.252
host='/bin/hostname'
case "$1" in
sta
- 生成公钥和私钥
oloz
DSA安全加密
package com.msserver.core.util;
import java.security.KeyPair;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.SecureRandom;
public class SecurityUtil {
- UIView 中加入的cocos2d,背景透明
374016526
cocos2dglClearColor
要点是首先pixelFormat:kEAGLColorFormatRGBA8,必须有alpha层才能透明。然后view设置为透明glView.opaque = NO;[director setOpenGLView:glView];[self.viewController.view setBackgroundColor:[UIColor clearColor]];[self.viewControll
- mysql常用命令
香水浓
mysql
连接数据库
mysql -u troy -ptroy
备份表
mysqldump -u troy -ptroy mm_database mm_user_tbl > user.sql
恢复表(与恢复数据库命令相同)
mysql -u troy -ptroy mm_database < user.sql
备份数据库
mysqldump -u troy -ptroy
- 我的架构经验系列文章 - 后端架构 - 系统层面
agevs
JavaScriptjquerycsshtml5
系统层面:
高可用性
所谓高可用性也就是通过避免单独故障加上快速故障转移实现一旦某台物理服务器出现故障能实现故障快速恢复。一般来说,可以采用两种方式,如果可以做业务可以做负载均衡则通过负载均衡实现集群,然后针对每一台服务器进行监控,一旦发生故障则从集群中移除;如果业务只能有单点入口那么可以通过实现Standby机加上虚拟IP机制,实现Active机在出现故障之后虚拟IP转移到Standby的快速
- 利用ant进行远程tomcat部署
aijuans
tomcat
在javaEE项目中,需要将工程部署到远程服务器上,如果部署的频率比较高,手动部署的方式就比较麻烦,可以利用Ant工具实现快捷的部署。这篇博文详细介绍了ant配置的步骤(http://www.cnblogs.com/GloriousOnion/archive/2012/12/18/2822817.html),但是在tomcat7以上不适用,需要修改配置,具体如下:
1.配置tomcat的用户角色
- 获取复利总收入
baalwolf
获取
public static void main(String args[]){
int money=200;
int year=1;
double rate=0.1;
&
- eclipse.ini解释
BigBird2012
eclipse
大多数java开发者使用的都是eclipse,今天感兴趣去eclipse官网搜了一下eclipse.ini的配置,供大家参考,我会把关键的部分给大家用中文解释一下。还是推荐有问题不会直接搜谷歌,看官方文档,这样我们会知道问题的真面目是什么,对问题也有一个全面清晰的认识。
Overview
1、Eclipse.ini的作用
Eclipse startup is controlled by th
- AngularJS实现分页功能
bijian1013
JavaScriptAngularJS分页
对于大多数web应用来说显示项目列表是一种很常见的任务。通常情况下,我们的数据会比较多,无法很好地显示在单个页面中。在这种情况下,我们需要把数据以页的方式来展示,同时带有转到上一页和下一页的功能。既然在整个应用中这是一种很常见的需求,那么把这一功能抽象成一个通用的、可复用的分页(Paginator)服务是很有意义的。
&nbs
- [Maven学习笔记三]Maven archetype
bit1129
ArcheType
archetype的英文意思是原型,Maven archetype表示创建Maven模块的模版,比如创建web项目,创建Spring项目等等.
mvn archetype提供了一种命令行交互式创建Maven项目或者模块的方式,
mvn archetype
1.在LearnMaven-ch03目录下,执行命令mvn archetype:gener
- 【Java命令三】jps
bit1129
Java命令
jps很简单,用于显示当前运行的Java进程,也可以连接到远程服务器去查看
[hadoop@hadoop bin]$ jps -help
usage: jps [-help]
jps [-q] [-mlvV] [<hostid>]
Definitions:
<hostid>: <hostname>[:
- ZABBIX2.2 2.4 等各版本之间的兼容性
ronin47
zabbix更新很快,从2009年到现在已经更新多个版本,为了使用更多zabbix的新特性,随之而来的便是升级版本,zabbix版本兼容性是必须优先考虑的一点 客户端AGENT兼容
zabbix1.x到zabbix2.x的所有agent都兼容zabbix server2.4:如果你升级zabbix server,客户端是可以不做任何改变,除非你想使用agent的一些新特性。 Zabbix代理(p
- unity 3d还是cocos2dx哪个适合游戏?
brotherlamp
unity自学unity教程unity视频unity资料unity
unity 3d还是cocos2dx哪个适合游戏?
问:unity 3d还是cocos2dx哪个适合游戏?
答:首先目前来看unity视频教程因为是3d引擎,目前对2d支持并不完善,unity 3d 目前做2d普遍两种思路,一种是正交相机,3d画面2d视角,另一种是通过一些插件,动态创建mesh来绘制图形单元目前用的较多的是2d toolkit,ex2d,smooth moves,sm2,
- 百度笔试题:一个已经排序好的很大的数组,现在给它划分成m段,每段长度不定,段长最长为k,然后段内打乱顺序,请设计一个算法对其进行重新排序
bylijinnan
java算法面试百度招聘
import java.util.Arrays;
/**
* 最早是在陈利人老师的微博看到这道题:
* #面试题#An array with n elements which is K most sorted,就是每个element的初始位置和它最终的排序后的位置的距离不超过常数K
* 设计一个排序算法。It should be faster than O(n*lgn)。
- 获取checkbox复选框的值
chiangfai
checkbox
<title>CheckBox</title>
<script type = "text/javascript">
doGetVal: function doGetVal()
{
//var fruitName = document.getElementById("apple").value;//根据
- MySQLdb用户指南
chenchao051
mysqldb
原网页被墙,放这里备用。 MySQLdb User's Guide
Contents
Introduction
Installation
_mysql
MySQL C API translation
MySQL C API function mapping
Some _mysql examples
MySQLdb
- HIVE 窗口及分析函数
daizj
hive窗口函数分析函数
窗口函数应用场景:
(1)用于分区排序
(2)动态Group By
(3)Top N
(4)累计计算
(5)层次查询
一、分析函数
用于等级、百分点、n分片等。
函数 说明
RANK() &nbs
- PHP ZipArchive 实现压缩解压Zip文件
dcj3sjt126com
PHPzip
PHP ZipArchive 是PHP自带的扩展类,可以轻松实现ZIP文件的压缩和解压,使用前首先要确保PHP ZIP 扩展已经开启,具体开启方法就不说了,不同的平台开启PHP扩增的方法网上都有,如有疑问欢迎交流。这里整理一下常用的示例供参考。
一、解压缩zip文件 01 02 03 04 05 06 07 08 09 10 11
- 精彩英语贺词
dcj3sjt126com
英语
I'm always here
我会一直在这里支持你
&nb
- 基于Java注解的Spring的IoC功能
e200702084
javaspringbeanIOCOffice
- java模拟post请求
geeksun
java
一般API接收客户端(比如网页、APP或其他应用服务)的请求,但在测试时需要模拟来自外界的请求,经探索,使用HttpComponentshttpClient可模拟Post提交请求。 此处用HttpComponents的httpclient来完成使命。
import org.apache.http.HttpEntity ;
import org.apache.http.HttpRespon
- Swift语法之 ---- ?和!区别
hongtoushizi
?swift!
转载自: http://blog.sina.com.cn/s/blog_71715bf80102ux3v.html
Swift语言使用var定义变量,但和别的语言不同,Swift里不会自动给变量赋初始值,也就是说变量不会有默认值,所以要求使用变量之前必须要对其初始化。如果在使用变量之前不进行初始化就会报错:
var stringValue : String
//
- centos7安装jdk1.7
jisonami
jdkcentos
安装JDK1.7
步骤1、解压tar包在当前目录
[root@localhost usr]#tar -xzvf jdk-7u75-linux-x64.tar.gz
步骤2:配置环境变量
在etc/profile文件下添加
export JAVA_HOME=/usr/java/jdk1.7.0_75
export CLASSPATH=/usr/java/jdk1.7.0_75/lib
- 数据源架构模式之数据映射器
home198979
PHP架构数据映射器datamapper
前面分别介绍了数据源架构模式之表数据入口、数据源架构模式之行和数据入口数据源架构模式之活动记录,相较于这三种数据源架构模式,数据映射器显得更加“高大上”。
一、概念
数据映射器(Data Mapper):在保持对象和数据库(以及映射器本身)彼此独立的情况下,在二者之间移动数据的一个映射器层。概念永远都是抽象的,简单的说,数据映射器就是一个负责将数据映射到对象的类数据。
&nb
- 在Python中使用MYSQL
pda158
mysqlpython
缘由 近期在折腾一个小东西须要抓取网上的页面。然后进行解析。将结果放到
数据库中。 了解到
Python在这方面有优势,便选用之。 由于我有台
server上面安装有
mysql,自然使用之。在进行数据库的这个操作过程中遇到了不少问题,这里
记录一下,大家共勉。
python中mysql的调用
百度之后能够通过MySQLdb进行数据库操作。
- 单例模式
hxl1988_0311
java单例设计模式单件
package com.sosop.designpattern.singleton;
/*
* 单件模式:保证一个类必须只有一个实例,并提供全局的访问点
*
* 所以单例模式必须有私有的构造器,没有私有构造器根本不用谈单件
*
* 必须考虑到并发情况下创建了多个实例对象
* */
/**
* 虽然有锁,但是只在第一次创建对象的时候加锁,并发时不会存在效率
- 27种迹象显示你应该辞掉程序员的工作
vipshichg
工作
1、你仍然在等待老板在2010年答应的要提拔你的暗示。 2、你的上级近10年没有开发过任何代码。 3、老板假装懂你说的这些技术,但实际上他完全不知道你在说什么。 4、你干完的项目6个月后才部署到现场服务器上。 5、时不时的,老板在检查你刚刚完成的工作时,要求按新想法重新开发。 6、而最终这个软件只有12个用户。 7、时间全浪费在办公室政治中,而不是用在开发好的软件上。 8、部署前5分钟才开始测试。