【LeetCode】最长公共子序列 | 718. Maximum Length of Repeated Subarray | 最短路径

1. 最长公共子序列

1.1 介绍最长公共子序列的概念

最长公共子串(Longest Common Substring)最长公共子序列(Longest Common Subsequence)的区别: 子串要求在原字符串中是连续的,而子序列则只需保持相对顺序一致,并不要求连续

(1)例如X = {a, Q, 1, 1}; Y = {a, 1, 1, d, f}那么,{a, 1, 1}是X和Y的最长公共子序列,但不是它们的最长公共字串。

(2)S1 = ABCD,S2=AEBD,那么S1与S2的最长公共子序列是{ABD}。

1.2 最长公共子序列的解题思路

S1[0...m]表示:S1字符串下标从0到m的子串。

S2[0...n]表示:S2字符串下标从0到n的子串。

那么最长公共子序列的状态转移方程为:

LCS(m,n)表示:S1[0...m]和S2[0...n]的最长公共子序列的长度。

 【LeetCode】最长公共子序列 | 718. Maximum Length of Repeated Subarray | 最短路径_第1张图片

 1.3 具体例子理解最长公共子序列的解题思路

【LeetCode】最长公共子序列 | 718. Maximum Length of Repeated Subarray | 最短路径_第2张图片1.4 代码实现

(1)递归方法

class Solution:

    def tryLCS(self, s1, s2):

        if s1 == None or s2 == None:
            return None

        if len(s1) == 0 or len(s2) == 0:
            return 0

        # 求s1[0...m]和s2[0...n]的最长公共子序列的长度值
        def LCS(s1, s2, m, n):

            if m < 0 or n < 0:
                return 0

            if s1[m] == s2[n]:
                return 1 + LCS(s1, s2, m-1, n-1)
            else:
                 return max(LCS(s1, s2, m-1, n), LCS(s1, s2, m, n-1))

        return LCS(s1, s2, len(s1)-1, len(s2)-1)

solution = Solution()
# test 1
s1 = "ABCDGH"
s2 = "ABDHG"
print(solution.tryLCS(s1, s2))

(2)记忆化搜索算法

class Solution:

    def tryLCS(self, s1, s2):

        if s1 == None or s2 == None:
            return None

        if len(s1) == 0 or len(s2) == 0:
            return ""

        memo = [[-1 for _ in range(len(s2))] for _ in range(len(s1)) ]

        # 求s1[0...m]和s2[0...n]的最长公共子序列的长度值
        def LCS(s1, s2, m, n):

            if m < 0 or n < 0:
                return 0

            if memo[m][n] != -1:
                return memo[m][n]

            if s1[m] == s2[n]:
                res = 1 + LCS(s1, s2, m-1, n-1)
            else:
                res = max(LCS(s1, s2, m-1, n), LCS(s1, s2, m, n-1))

            memo[m][n] = res
            return res

        return LCS(s1, s2, len(s1)-1, len(s2)-1)

solution = Solution()
# test 1
# s1 = "ABCDGH"
# s2 = "ABDHG"
# print(solution.tryLCS(s1, s2))

# test 2
s1 = "AAACCGTGAGTTATTCGTTCTAGAA"
s2 = "CACCCCTAAGGTACCTTTGGTTC"
print(solution.tryLCS(s1, s2))

(3)动态规划方法 

class Solution:

    def LCS(self, s1, s2):

        m = len(s1)
        n = len(s2)

        # 对memo的第0行和第0列进行初始化
        memo = [[0 for _ in range(n)] for _ in range(m)]

        # 初始化第0列
        for i in range(n):
            if s1[0] == s2[i]:
                for k in range(i,n):
                    memo[0][k] = 1
                break

        # 初始化第0行
        for i in range(m):
            if s1[i] == s2[0]:
                for k in range(i,m):
                    memo[k][0] = 1
                break

        # 动态规划过程
        for i in range(1, m):
            for j in range(1, n):
                if s1[i] == s2[j]:
                    memo[i][j] = 1 + memo[i - 1][j - 1]
                else:
                    memo[i][j] = max(memo[i - 1][j], memo[i][j - 1])

        return memo[m-1][n-1]


solution = Solution()
# test 1
s1 = "ABCDGH"
s2 = "ABDHG"
print(solution.LCS(s1, s2))

1.5 【718】 Maximum Length of Repeated Subarray

地址:https://leetcode.com/problems/maximum-length-of-repeated-subarray/

2. 最短路径与动态规划求解

【LeetCode】最长公共子序列 | 718. Maximum Length of Repeated Subarray | 最短路径_第3张图片

3. 求动态规划的具体解

反向求解出s1与s2的最长公共子序列,而不是求最长公共子序列的长度。

例题:输出最长公共子序列。

class Solution:

    def LCS(self, s1, s2):

        m = len(s1)
        n = len(s2)

        # 对memo的第0行和第0列进行初始化
        memo = [[0 for _ in range(n)] for _ in range(m)]

        # 初始化第0列
        for i in range(n):
            if s1[0] == s2[i]:
                for k in range(i,n):
                    memo[0][k] = 1
                break

        # 初始化第0行
        for i in range(m):
            if s1[i] == s2[0]:
                for k in range(i,m):
                    memo[k][0] = 1
                break

        # 动态规划过程
        for i in range(1, m):
            for j in range(1, n):
                if s1[i] == s2[j]:
                    memo[i][j] = 1 + memo[i - 1][j - 1]
                else:
                    memo[i][j] = max(memo[i - 1][j], memo[i][j - 1])

        # return memo[m-1][n-1]

        # 通过memo反向求解s1和s2的最长公共子序列
        m = m - 1
        n = n - 1
        LCSstr = []
        while m >= 0 and n >=0:
            if s1[m] == s2[n]:
                LCSstr.append(s1[m])
                m = m - 1
                n = n - 1

            elif m == 0:
                n = n - 1
            elif n == 0:
                m = m - 1
            else:
                if memo[m - 1][n] > memo[m][n - 1]:
                    m = m -1
                else:
                    n = n - 1
        return LCSstr

solution = Solution()
# test 1
s1 = "ABCDGH"
s2 = "ABDHG"
print(solution.LCS(s1, s2))

练习题(未完成):

【LeetCode】300. Longest Increasing Subsequence

要求:打印出最长上升子序列。

【动态规划】0-1背包问题

要求:输出背包中放的具体有哪些物品。

你可能感兴趣的:(算法)