- 论文学习_SoK: An Essential Guide For Using Malware Sandboxes In Security Applications: Challenges, Pitfa
kitsch0x97
学习
0.文章概述恶意软件沙箱尽管在安全应用程序中带来许多优势,但其复杂的选择、配置和使用过程常让新用户不知所措,甚至可能导致错误的部署,进而对安全分析结果产生负面影响。目前,缺乏系统化的指导来帮助用户正确选择和应用沙箱工具,这种知识空白阻碍了沙箱在不同研究领域中的有效应用。为了填补这一知识空白,研究团队系统分析了84篇关于x86/64恶意软件沙箱的学术论文,并提出了一种新颖的框架,以简化沙箱组件和操作
- 论文学习笔记 | AAAI-2022 TS2Vec:实现时间序列通用表示
叶庭云
人工智能学习之路时间序列表征学习TS2Vec分层对比学习上下文一致性正样本选择策略
CSDN叶庭云:https://yetingyun.blog.csdn.net/APA引用格式:Yue,Z.,Wang,Y.,Duan,J.,Yang,T.,Huang,C.,Tong,Y.,&Xu,B.(2022,June).TS2Vec:Towardsuniversalrepresentationoftimeseries.InProceedingsoftheAAAIConferenceonAr
- 论文学习——基于双种群进化的不连续和不规则可行域动态约束多目标优化
臭东西的学习笔记
学习
论文题目:Dual-PopulationEvolutionBasedDynamicConstrainedMultiobjectiveOptimizationWithDiscontinuousandIrregularFeasibleRegions基于双种群进化的不连续和不规则可行域动态约束多目标优化(XiaoxuJiang,QingdaChen,Member,IEEE,JinliangDing,Se
- 论文学习_Directed Greybox Fuzzing
kitsch0x97
学习
摘要:现有的灰盒模糊测试工具(GreyboxFuzzers,简称GF)在测试引导性方面存在明显不足,比如难以有效地将测试引导至特定的高风险变更或补丁、关键系统调用、危险代码位置,或是试图重现漏洞时涉及的堆栈追踪中的相关函数。为此,有研究者提出了“定向灰盒模糊测试”(DirectedGreyboxFuzzing,简称DGF)的概念,其核心目标是生成能高效触达指定程序位置的输入。为实现这一目标,他们设
- 论文学习 Generative Modeling by Estimating Gradients of the Data Distribution
Lyrig~
神经网络学习机器学习
论文学习GenerativeModelingbyEstimatingGradientsoftheDataDistribution前言前情提要分数匹配朗格文动力学核心问题流形假设产生的问题文章的解决方案前言个人认为,这篇SongYang大佬的文章虽然被网上很多人吹,然而我们还是应该避免捧杀,认真了解一下其文章的内容和思想,以及试图理解他是如何想到这种思路的。通过其论文引用,实际上也能发现Song神的
- 读论文学习——相位恢复和零像素填充
tt555555555555
深度学习学习笔记学习
文章目录相位恢复算法Gerchberg-Saxton(GS)算法基本原理算法步骤**优缺点**角谱迭代(AngularSpectrumIteration,ASI)算法基本原理**算法步骤****ASI的改进****优缺点**基于强度传输方程(TIE)的相位恢复基本原理**算法步骤****优缺点****三种算法的对比****总结**零像素填充1.增加图像的频谱分量2.减少衍射失真3.提高相位梯度下降
- 《FFCA-YOLO》论文学习,面向遥感图像的小目标检测最新方法
张三不嚣张
1024程序员节目标检测人工智能深度学习神经网络YOLO计算机视觉
一、概要论文全称:《FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages》发表期刊:IEEETRANSACTIONSONGEOSCIENCEANDREMOTESENSING.(TGRS)2024论文地址:FFCA-YOLOforSmallObjectDetectioninRemoteSensingImages|IEEEJournals&Maga
- 论文学习11:Boundary-Guided Camouflaged Object Detection
zl29
学习目标检测人工智能
代码来源GitHub-thograce/BGNet:Boundary-GuidedCamouflagedObjectDetection模块作用BGNet利用额外的目标相关边缘语义信息来引导COD任务的特征学习,从而强制模型生成能够突出目标结构的特征。这一机制有助于提高目标边界的精准定位,从而提升伪装目标的检测性能。模块结构BGNet的架构基于Res2Net-50,编码器提取多级特征,解码器通过EA
- 论文学习:基于机器学习的光声图像分析1
superace7911
基于机器学习的光声图像处理机器学习人工智能图像处理
3/25——3/31期间论文学习笔记,关于基于机器学习的光声图像分析的6篇1区论文血管结构模拟&分割:Quantificationofvascularnetworksinphotoacousticmesoscopy链接数据集链接摘要这篇论文提出了一种新的方法,利用中观光声成像(MesoscopicPhotoacousticImaging,PAI)技术和高级图像分析技术,来非侵入性地定量化和分析活体
- GAN开山之作--Generative Adversarial Nets
星空彡
深度学习机器学习神经网络
GAN开山之作–GenerativeAdversarialNets最近对GAN比较有兴趣,所以开个坑记录一下读论文学习的知识。这是本专栏的第一篇论文,所以笔者认为解析GAN的开山之作——GenerativeAdversarialNets[1]是非常有必要的。有关数学推导部分本文借鉴了深度之眼的b站发布的视频[2]。本文并不是逐字翻译,主要是写笔者对这篇论文的见解思考,其中难免会有错的地方,欢迎讨论
- 论文学习3:深度学习增强的光声成像(PAI)的最新进展(综述)
superace7911
基于机器学习的光声图像处理机器学习图像处理
原文链接有空可以细看,这里中列出了文中提到的部分研究结果写作大纲1.引言光声成像(PAI)的介绍,它结合了光学和超声成像的优点,为生物医学成像提供了一种有前景的模态。深度学习(DL)在解决PAI中存在的技术限制(如硬件限制、生物特征信息缺乏等)方面的潜力。2.DL方法的原理介绍DL的子集:监督学习、无监督学习和强化学习。详细说明代表性DL架构:卷积神经网络(CNN)、U-形神经网络(U-Net)和
- 论文学习笔记 VMamba: Visual State Space Model
Wils0nEdwards
学习笔记
概览这篇论文的动机源于在计算机视觉领域设计计算高效的网络架构的持续需求。当前的视觉模型如卷积神经网络(CNNs)和视觉Transformer(ViTs)在处理大规模视觉任务时展现出良好的表现,但都存在各自的局限性。特别是,ViTs尽管在处理大规模数据上具有优势,但其自注意力机制的二次复杂度对高分辨率图像处理时的计算成本极高。因此,研究者希望通过引入新的架构来降低这种复杂度,并提高视觉任务的效率。现
- 论文学习1----理解深度学习需要重新思考泛化Understanding deep learning requires rethinking generalization
夏洛的网
机器学习深度学习论文深度学习神经网络
——论文地址:Understandingdeeplearningrequiresrethinkinggeneralization1、有关新闻1.1新闻一:参考1:机器之心尽管深度人工神经网络规模庞大,但它们的训练表现和测试表现之间可以表现出非常小的差异。传统的思考是将小的泛化误差要么归结为模型族的特性,要么就认为与训练过程中的正则化技术有关。通过广泛的系统性实验,我们表明这些传统的方法并不能解释大
- 半监督语义分割论文学习记录
西瓜真的很皮啊
半监督语义分割深度学习机器学习人工智能
Semi-SupervisedSemanticSegmentationwithCross-ConsistencyTraining1.1motivation一致性训练的目的是在应用于输入的小扰动上增强模型预测的不变性。因此,学习的模型将对这样的小变化具有鲁棒性。一致性训练的有效性在很大程度上取决于数据分布的行为,即集群假设,其中类必须由低密度区域分隔。在语义分割中,在输入中,我们没有观察到低密度区域
- 2019-1-27晨间日记
紫薇忘了水葫芦
在柳州的第二天起床:八点半左右天气:晴心情:好像很复杂,一会儿开心一会儿不开心纪念日:参加了晗大姐的婚礼任务清单昨日完成的任务,最重要的三件事:⒈把之前的论文题目整理了一遍⒉参加了婚礼⒊送了礼物改进:要静下来多看些书做些运动,多思考。习惯养成:早睡早起,饮食清淡周目标·完成进度开始读论文学习·信息·阅读阅读健康·饮食·锻炼饮食清淡,多锻炼人际·家人·朋友多联系工作·思考怎么把自己的工作做得更好最美
- 语义分割系列之FCN、DeeplabV1、V2、V3、V3Plus论文学习
Diros1g
学习深度学习计算机视觉
FCNFullyConvolutionalNetworks论文:FullyConvolutionalNetworksforSemanticSegmentation地址:https://openaccess.thecvf.com/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf特点:用全卷积替
- 论文学习笔记 POSEIDON: Privacy-Preserving Federated Neural Network Learning
JiangChSo
论文学习深度学习机器学习神经网络算法分布式
论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearningNDSS2021录用文章目录论文学习笔记POSEIDON:Privacy-PreservingFederatedNeuralNetworkLearning一、机器学习1.机器学习(ML)中的挑战2.隐私保护机器学习(PPML)二、POSEIDON方案1.系统和威胁模型2.方
- 论文学习——Vector Quantized Diffusion Model for Text-to-Image Synthesis
客院载论
音频生成学习
文章目录引言正文Abstract文章的核心VQ潜在空间适合文本转图片生成VQDiffusion的比起自回归和GAN的其他模型的成果IntroductionNLP的成功给图片生成的启发自回归模型的单向误差解释预测误差累积VQDiffusion能够解决预测误差累计和单向误差两个问题解决单向误差的方式——每一次预测都是考虑所有token的上下文信息解决错误累积的方式——使用基于掩码和替换的扩散策略模型测
- Python论文学习 -- 第二章 --- Python基础知识
Metallic Cat
学习
1.cmd命令器中如果想终止命令的话可以在终止行输入exit()函数调用停止命令一.字面量二.注释---对代码进行解释说明1.在print函数中:print(a,"asd",c)输出的结果为a变量对应的值+asd+c变量对应的值如:则输出的结果为:往type()函数中输入数据,它会返回数据的类型给我们,然后我们可以用print()函数将数据类型打出来1.值得注意的是变量本身是没有类型的,它只是一个
- 论文学习笔记:PoseFix: Model-agnostic General Human Pose Refinement Network
wangyc1208
姿态估计
论文:https://arxiv.org/abs/1812.03595代码:https://github.com/mks0601/PoseFix_RELEASE—————————————————————————————————————————————————目标:多人姿态估计:本篇论文主要工作是利用一个人体姿势优化网络,从输入图像和姿势中对人体姿态进行优化。大概的效果如下图:———————————
- 2021-9-23晨间日记
言二yaner
今天是什么日子起床:7:40就寝:23:00天气:美好心情:美好纪念日:无任务清单昨日完成的任务,最重要的三件事:投稿改进:想到就做到习惯养成:专注自己,提升自己周目标·完成进度准备再写一篇论文学习·信息·阅读多阅读,多学习健康·饮食·锻炼早饭:小米粥,鸡蛋,烧麦中饭:真味卤,杨枝甘露晚饭:黑米粥锻炼:一小时左右人际·家人·朋友一切都是最好的安排,虽然没有过去,但也有属于自己的收获工作·思考凡事早
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 基于变长频带选择的JPEG图像可逆数据隐藏-文献学习
凌峰的博客
学习算法计算机视觉
论文学习原文题目:ReversibleDataHidingofJPEGImageBasedonAdaptiveFrequencyBandLength发表期刊:TCSVT2023(中科院1区)作者:NingxiongMao,HongjieHe,FanChen,YuanYuan,LingfengQu摘要JPEG图像在互联网上被广泛使用。基于quantifieddiscretecosinetransfo
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- Nerf-Wild神经辐射场论文学习笔记 Neural Radiance Fields for Unconstrained Photo Collections
出门吃三碗饭
Nerf学习记录三维重建学习笔记
前言:本文为记录自己在Nerf学习道路的一些笔记,包括对论文以及其代码的思考内容。公众号:AI知识物语B站后续同步更新讲解本篇文章主要针对其数学公式来学习其内容,欢迎批评指正!!!(代码下篇出)1:摘要提出基于学习(learning-based)方法,使用野外照片的非结构化集合(unstructuredcollectionsofin-the-wildphotographs)来合成复杂场景。之前的N
- GroupMixFormer:Advancing Vision Transformers with Group-Mix Attention论文学习笔记
athrunsunny
Transformer学习笔记深度学习计算机视觉transformer
论文地址:https://arxiv.org/pdf/2311.15157.pdf代码地址:https://github.com/AILab-CVC/GroupMixFormer摘要:ViT已被证明可以通过使用多头自注意力(MHSA)对远程依赖关系进行建模来增强视觉识别,这通常被表述为Query-Key-Value计算。但是,从“Query”和“Key”生成的注意力图仅捕获单个粒度的token-t
- 论文学习——基于查询的workload预测(CMU)
_zhj
机器学习数据库
一、简介论文题目:Query-basedWorkloadForecastingforSelf-DrivingDatabaseManagementSystems发表在2018SIGMOD,来自cmu的数据库组(这个组真的很厉害)这篇论文主要讲数据库workload预测的问题。因为要实现数据库self-driving(如选择合适的时机在合适的列上自动创建索引),应该根据将要到来的查询对数据库进行优化,
- 第六十八周周报
童、一
周报深度学习
学习目标:项目论文学习时间:2023.12.23-2023.12.29学习产出:一、项目这周后两天在根据吉安方面的需求优化SQL,提升性能二、论文这周周六在杨老师的带领下仔细改了论文前两段,后面几天自己把剩下的改完了,目前还在给杨老师看。实验方面,由于LSUN一直跑不出好的效果,已经转为STL10和CelebA,预计得下周才能出结果。其他时间都在搞开题报告的东西。
- DN-DETR论文学习
彭祥.
DETR系列学习深度学习计算机视觉
摘要本文提出了一种新颖的去噪训练方法,以加快DETR(DEtectionTRansformer)训练,并加深了对类DETR方法的慢收敛问题的理解。我们表明,缓慢收敛是由于二分图匹配的不稳定性导致早期训练阶段的优化目标不一致。为了解决这个问题,除了匈牙利损失之外,我们的方法还向Transformer解码器馈送了带有噪声的GT边界框,并训练模型重建原始框,从而有效地降低了二分图匹配难度,并加快了收敛速
- Java常用排序算法/程序员必须掌握的8大排序算法
cugfy
java
分类:
1)插入排序(直接插入排序、希尔排序)
2)交换排序(冒泡排序、快速排序)
3)选择排序(直接选择排序、堆排序)
4)归并排序
5)分配排序(基数排序)
所需辅助空间最多:归并排序
所需辅助空间最少:堆排序
平均速度最快:快速排序
不稳定:快速排序,希尔排序,堆排序。
先来看看8种排序之间的关系:
1.直接插入排序
(1
- 【Spark102】Spark存储模块BlockManager剖析
bit1129
manager
Spark围绕着BlockManager构建了存储模块,包括RDD,Shuffle,Broadcast的存储都使用了BlockManager。而BlockManager在实现上是一个针对每个应用的Master/Executor结构,即Driver上BlockManager充当了Master角色,而各个Slave上(具体到应用范围,就是Executor)的BlockManager充当了Slave角色
- linux 查看端口被占用情况详解
daizj
linux端口占用netstatlsof
经常在启动一个程序会碰到端口被占用,这里讲一下怎么查看端口是否被占用,及哪个程序占用,怎么Kill掉已占用端口的程序
1、lsof -i:port
port为端口号
[root@slave /data/spark-1.4.0-bin-cdh4]# lsof -i:8080
COMMAND PID USER FD TY
- Hosts文件使用
周凡杨
hostslocahost
一切都要从localhost说起,经常在tomcat容器起动后,访问页面时输入http://localhost:8088/index.jsp,大家都知道localhost代表本机地址,如果本机IP是10.10.134.21,那就相当于http://10.10.134.21:8088/index.jsp,有时候也会看到http: 127.0.0.1:
- java excel工具
g21121
Java excel
直接上代码,一看就懂,利用的是jxl:
import java.io.File;
import java.io.IOException;
import jxl.Cell;
import jxl.Sheet;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import
- web报表工具finereport常用函数的用法总结(数组函数)
老A不折腾
finereportweb报表函数总结
ADD2ARRAY
ADDARRAY(array,insertArray, start):在数组第start个位置插入insertArray中的所有元素,再返回该数组。
示例:
ADDARRAY([3,4, 1, 5, 7], [23, 43, 22], 3)返回[3, 4, 23, 43, 22, 1, 5, 7].
ADDARRAY([3,4, 1, 5, 7], "测试&q
- 游戏服务器网络带宽负载计算
墙头上一根草
服务器
家庭所安装的4M,8M宽带。其中M是指,Mbits/S
其中要提前说明的是:
8bits = 1Byte
即8位等于1字节。我们硬盘大小50G。意思是50*1024M字节,约为 50000多字节。但是网宽是以“位”为单位的,所以,8Mbits就是1M字节。是容积体积的单位。
8Mbits/s后面的S是秒。8Mbits/s意思是 每秒8M位,即每秒1M字节。
我是在计算我们网络流量时想到的
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
Spring 3 系列
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- 高性能mysql 之 选择存储引擎(一)
annan211
mysqlInnoDBMySQL引擎存储引擎
1 没有特殊情况,应尽可能使用InnoDB存储引擎。 原因:InnoDB 和 MYIsAM 是mysql 最常用、使用最普遍的存储引擎。其中InnoDB是最重要、最广泛的存储引擎。她 被设计用来处理大量的短期事务。短期事务大部分情况下是正常提交的,很少有回滚的情况。InnoDB的性能和自动崩溃 恢复特性使得她在非事务型存储的需求中也非常流行,除非有非常
- UDP网络编程
百合不是茶
UDP编程局域网组播
UDP是基于无连接的,不可靠的传输 与TCP/IP相反
UDP实现私聊,发送方式客户端,接受方式服务器
package netUDP_sc;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.Ine
- JQuery对象的val()方法执行结果分析
bijian1013
JavaScriptjsjquery
JavaScript中,如果id对应的标签不存在(同理JAVA中,如果对象不存在),则调用它的方法会报错或抛异常。在实际开发中,发现JQuery在id对应的标签不存在时,调其val()方法不会报错,结果是undefined。
- http请求测试实例(采用json-lib解析)
bijian1013
jsonhttp
由于fastjson只支持JDK1.5版本,因些对于JDK1.4的项目,可以采用json-lib来解析JSON数据。如下是http请求的另外一种写法,仅供参考。
package com;
import java.util.HashMap;
import java.util.Map;
import
- 【RPC框架Hessian四】Hessian与Spring集成
bit1129
hessian
在【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中介绍了基于Hessian的RPC服务的实现步骤,在那里使用Hessian提供的API完成基于Hessian的RPC服务开发和客户端调用,本文使用Spring对Hessian的集成来实现Hessian的RPC调用。
定义模型、接口和服务器端代码
|---Model
&nb
- 【Mahout三】基于Mahout CBayes算法的20newsgroup流程分析
bit1129
Mahout
1.Mahout环境搭建
1.下载Mahout
http://mirror.bit.edu.cn/apache/mahout/0.10.0/mahout-distribution-0.10.0.tar.gz
2.解压Mahout
3. 配置环境变量
vim /etc/profile
export HADOOP_HOME=/home
- nginx负载tomcat遇非80时的转发问题
ronin47
nginx负载后端容器是tomcat(其它容器如WAS,JBOSS暂没发现这个问题)非80端口,遇到跳转异常问题。解决的思路是:$host:port
详细如下:
该问题是最先发现的,由于之前对nginx不是特别的熟悉所以该问题是个入门级别的:
? 1 2 3 4 5
- java-17-在一个字符串中找到第一个只出现一次的字符
bylijinnan
java
public class FirstShowOnlyOnceElement {
/**Q17.在一个字符串中找到第一个只出现一次的字符。如输入abaccdeff,则输出b
* 1.int[] count:count[i]表示i对应字符出现的次数
* 2.将26个英文字母映射:a-z <--> 0-25
* 3.假设全部字母都是小写
*/
pu
- mongoDB 复制集
开窍的石头
mongodb
mongo的复制集就像mysql的主从数据库,当你往其中的主复制集(primary)写数据的时候,副复制集(secondary)会自动同步主复制集(Primary)的数据,当主复制集挂掉以后其中的一个副复制集会自动成为主复制集。提供服务器的可用性。和防止当机问题
mo
- [宇宙与天文]宇宙时代的经济学
comsci
经济
宇宙尺度的交通工具一般都体型巨大,造价高昂。。。。。
在宇宙中进行航行,近程采用反作用力类型的发动机,需要消耗少量矿石燃料,中远程航行要采用量子或者聚变反应堆发动机,进行超空间跳跃,要消耗大量高纯度水晶体能源
以目前地球上国家的经济发展水平来讲,
- Git忽略文件
Cwind
git
有很多文件不必使用git管理。例如Eclipse或其他IDE生成的项目文件,编译生成的各种目标或临时文件等。使用git status时,会在Untracked files里面看到这些文件列表,在一次需要添加的文件比较多时(使用git add . / git add -u),会把这些所有的未跟踪文件添加进索引。
==== ==== ==== 一些牢骚
- MySQL连接数据库的必须配置
dashuaifu
mysql连接数据库配置
MySQL连接数据库的必须配置
1.driverClass:com.mysql.jdbc.Driver
2.jdbcUrl:jdbc:mysql://localhost:3306/dbname
3.user:username
4.password:password
其中1是驱动名;2是url,这里的‘dbna
- 一生要养成的60个习惯
dcj3sjt126com
习惯
一生要养成的60个习惯
第1篇 让你更受大家欢迎的习惯
1 守时,不准时赴约,让别人等,会失去很多机会。
如何做到:
①该起床时就起床,
②养成任何事情都提前15分钟的习惯。
③带本可以随时阅读的书,如果早了就拿出来读读。
④有条理,生活没条理最容易耽误时间。
⑤提前计划:将重要和不重要的事情岔开。
⑥今天就准备好明天要穿的衣服。
⑦按时睡觉,这会让按时起床更容易。
2 注重
- [介绍]Yii 是什么
dcj3sjt126com
PHPyii2
Yii 是一个高性能,基于组件的 PHP 框架,用于快速开发现代 Web 应用程序。名字 Yii (读作 易)在中文里有“极致简单与不断演变”两重含义,也可看作 Yes It Is! 的缩写。
Yii 最适合做什么?
Yii 是一个通用的 Web 编程框架,即可以用于开发各种用 PHP 构建的 Web 应用。因为基于组件的框架结构和设计精巧的缓存支持,它特别适合开发大型应
- Linux SSH常用总结
eksliang
linux sshSSHD
转载请出自出处:http://eksliang.iteye.com/blog/2186931 一、连接到远程主机
格式:
ssh name@remoteserver
例如:
ssh
[email protected]
二、连接到远程主机指定的端口
格式:
ssh name@remoteserver -p 22
例如:
ssh i
- 快速上传头像到服务端工具类FaceUtil
gundumw100
android
快速迭代用
import java.io.DataOutputStream;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOExceptio
- jQuery入门之怎么使用
ini
JavaScripthtmljqueryWebcss
jQuery的强大我何问起(个人主页:hovertree.com)就不用多说了,那么怎么使用jQuery呢?
首先,下载jquery。下载地址:http://hovertree.com/hvtart/bjae/b8627323101a4994.htm,一个是压缩版本,一个是未压缩版本,如果在开发测试阶段,可以使用未压缩版本,实际应用一般使用压缩版本(min)。然后就在页面上引用。
- 带filter的hbase查询优化
kane_xie
查询优化hbaseRandomRowFilter
问题描述
hbase scan数据缓慢,server端出现LeaseException。hbase写入缓慢。
问题原因
直接原因是: hbase client端每次和regionserver交互的时候,都会在服务器端生成一个Lease,Lease的有效期由参数hbase.regionserver.lease.period确定。如果hbase scan需
- java设计模式-单例模式
men4661273
java单例枚举反射IOC
单例模式1,饿汉模式
//饿汉式单例类.在类初始化时,已经自行实例化
public class Singleton1 {
//私有的默认构造函数
private Singleton1() {}
//已经自行实例化
private static final Singleton1 singl
- mongodb 查询某一天所有信息的3种方法,根据日期查询
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
// mongodb的查询真让人难以琢磨,就查询单天信息,都需要花费一番功夫才行。
// 第一种方式:
coll.aggregate([
{$project:{sendDate: {$substr: ['$sendTime', 0, 10]}, sendTime: 1, content:1}},
{$match:{sendDate: '2015-
- 二维数组转换成JSON
tangqi609567707
java二维数组json
原文出处:http://blog.csdn.net/springsen/article/details/7833596
public class Demo {
public static void main(String[] args) { String[][] blogL
- erlang supervisor
wudixiaotie
erlang
定义supervisor时,如果是监控celuesimple_one_for_one则删除children的时候就用supervisor:terminate_child (SupModuleName, ChildPid),如果shutdown策略选择的是brutal_kill,那么supervisor会调用exit(ChildPid, kill),这样的话如果Child的behavior是gen_