学以致用——Java源码——使用图片文件(.jpg)创建GIF动图(.gif)的Java程序

程序功能:

将多幅静态图片(.jpg)合成为.gif图片。

参考文章:

学以致用——Java源码——使用随机几何图形制作屏保程序(Screen Saver with Shapes Using the Java 2D API),

https://blog.csdn.net/hpdlzu80100/article/details/86678149。

该文章中的动图即使用本文中的方法创建而成。

运行示例:

学以致用——Java源码——使用图片文件(.jpg)创建GIF动图(.gif)的Java程序_第1张图片

源码:

(本文中的源码(主体类中的jpgToGif方法、三个辅助类:AnimatedGifEncoder类、LZWEncoder类、NeuQuant类)主要来自互联网)

1. 主体类

import java.awt.image.BufferedImage;
import java.io.File;

import javax.imageio.ImageIO;


/**
 * 
 * @author [email protected]
 * @Date Jan 24, 2019, 6:41:50 PM
 *
 */
public class MakeGif {
	
	
	public static void main(String[] args) {
		String[] pictures = {"C:\\test\\saveScreen1.jpg","C:\\test\\saveScreen2.jpg",
				"C:\\test\\saveScreen3.jpg","C:\\test\\saveScreen4.jpg","C:\\test\\saveScreen5.jpg",
				"C:\\test\\saveScreen6.jpg","C:\\test\\saveScreen7.jpg","C:\\test\\saveScreen8.jpg",
				"C:\\test\\saveScreen9.jpg"};
		
		String gifCreatd = "C:\\test\\ScreenSaverRandomShapes.gif";
		jpgToGif(pictures,gifCreatd);
		
	}

	/**  
     * 把多张jpg图片合成一张  
     * @param pic String[] 多个jpg文件名 包含路径  
     * @param newPic String 生成的gif文件名 包含路径  
     */  
    public static synchronized void jpgToGif(String pic[], String newPic) {  
        try {  
            AnimatedGifEncoder e = new AnimatedGifEncoder();          
            e.setRepeat(0);  
            e.start(newPic);  
            BufferedImage src[] = new BufferedImage[pic.length];  
            for (int i = 0; i < src.length; i++) {  
                e.setDelay(200); //设置播放的延迟时间  
                src[i] = ImageIO.read(new File(pic[i])); // 读入需要播放的jpg文件  
                e.addFrame(src[i]);  //添加到帧中  
            }  
            e.finish();  
        } catch (Exception e) {  
            System.out.println( "jpgToGif Failed:");  
            e.printStackTrace();  
        }  
    }
}

2. 辅助类

1)AnimatedGifEncoder类

import java.io.*;
import java.awt.*;
import java.awt.image.*;
 
/**
 * Class AnimatedGifEncoder - Encodes a GIF file consisting of one or
 * more frames.
 * 
 * Example:
 *    AnimatedGifEncoder e = new AnimatedGifEncoder();
 *    e.start(outputFileName);
 *    e.setDelay(1000);   // 1 frame per sec
 *    e.addFrame(image1);
 *    e.addFrame(image2);
 *    e.finish();
 * 
* No copyright asserted on the source code of this class. May be used * for any purpose, however, refer to the Unisys LZW patent for restrictions * on use of the associated LZWEncoder class. Please forward any corrections * to [email protected]. * * @author Kevin Weiner, FM Software * @version 1.03 November 2003 * */ public class AnimatedGifEncoder { protected int width; // image size protected int height; protected Color transparent = null; // transparent color if given protected int transIndex; // transparent index in color table protected int repeat = -1; // no repeat protected int delay = 0; // frame delay (hundredths) protected boolean started = false; // ready to output frames protected OutputStream out; protected BufferedImage image; // current frame protected byte[] pixels; // BGR byte array from frame protected byte[] indexedPixels; // converted frame indexed to palette protected int colorDepth; // number of bit planes protected byte[] colorTab; // RGB palette protected boolean[] usedEntry = new boolean[256]; // active palette entries protected int palSize = 7; // color table size (bits-1) protected int dispose = -1; // disposal code (-1 = use default) protected boolean closeStream = false; // close stream when finished protected boolean firstFrame = true; protected boolean sizeSet = false; // if false, get size from first frame protected int sample = 10; // default sample interval for quantizer /** * Sets the delay time between each frame, or changes it * for subsequent frames (applies to last frame added). * * @param ms int delay time in milliseconds */ public void setDelay(int ms) { delay = Math.round(ms / 10.0f); } /** * Sets the GIF frame disposal code for the last added frame * and any subsequent frames. Default is 0 if no transparent * color has been set, otherwise 2. * @param code int disposal code. */ public void setDispose(int code) { if (code >= 0) { dispose = code; } } /** * Sets the number of times the set of GIF frames * should be played. Default is 1; 0 means play * indefinitely. Must be invoked before the first * image is added. * * @param iter int number of iterations. * @return */ public void setRepeat(int iter) { if (iter >= 0) { repeat = iter; } } /** * Sets the transparent color for the last added frame * and any subsequent frames. * Since all colors are subject to modification * in the quantization process, the color in the final * palette for each frame closest to the given color * becomes the transparent color for that frame. * May be set to null to indicate no transparent color. * * @param c Color to be treated as transparent on display. */ public void setTransparent(Color c) { transparent = c; } /** * Adds next GIF frame. The frame is not written immediately, but is * actually deferred until the next frame is received so that timing * data can be inserted. Invoking finish() flushes all * frames. If setSize was not invoked, the size of the * first image is used for all subsequent frames. * * @param im BufferedImage containing frame to write. * @return true if successful. */ public boolean addFrame(BufferedImage im) { if ((im == null) || !started) { return false; } boolean ok = true; try { if (!sizeSet) { // use first frame's size setSize(im.getWidth(), im.getHeight()); } image = im; getImagePixels(); // convert to correct format if necessary analyzePixels(); // build color table & map pixels if (firstFrame) { writeLSD(); // logical screen descriptior writePalette(); // global color table if (repeat >= 0) { // use NS app extension to indicate reps writeNetscapeExt(); } } writeGraphicCtrlExt(); // write graphic control extension writeImageDesc(); // image descriptor if (!firstFrame) { writePalette(); // local color table } writePixels(); // encode and write pixel data firstFrame = false; } catch (IOException e) { ok = false; } return ok; } /** * Flushes any pending data and closes output file. * If writing to an OutputStream, the stream is not * closed. */ public boolean finish() { if (!started) return false; boolean ok = true; started = false; try { out.write(0x3b); // gif trailer out.flush(); if (closeStream) { out.close(); } } catch (IOException e) { ok = false; } // reset for subsequent use transIndex = 0; out = null; image = null; pixels = null; indexedPixels = null; colorTab = null; closeStream = false; firstFrame = true; return ok; } /** * Sets frame rate in frames per second. Equivalent to * setDelay(1000/fps). * * @param fps float frame rate (frames per second) */ public void setFrameRate(float fps) { if (fps != 0f) { delay = Math.round(100f / fps); } } /** * Sets quality of color quantization (conversion of images * to the maximum 256 colors allowed by the GIF specification). * Lower values (minimum = 1) produce better colors, but slow * processing significantly. 10 is the default, and produces * good color mapping at reasonable speeds. Values greater * than 20 do not yield significant improvements in speed. * * @param quality int greater than 0. * @return */ public void setQuality(int quality) { if (quality < 1) quality = 1; sample = quality; } /** * Sets the GIF frame size. The default size is the * size of the first frame added if this method is * not invoked. * * @param w int frame width. * @param h int frame width. */ public void setSize(int w, int h) { if (started && !firstFrame) return; width = w; height = h; if (width < 1) width = 320; if (height < 1) height = 240; sizeSet = true; } /** * Initiates GIF file creation on the given stream. The stream * is not closed automatically. * * @param os OutputStream on which GIF images are written. * @return false if initial write failed. */ public boolean start(OutputStream os) { if (os == null) return false; boolean ok = true; closeStream = false; out = os; try { writeString("GIF89a"); // header } catch (IOException e) { ok = false; } return started = ok; } /** * Initiates writing of a GIF file with the specified name. * * @param file String containing output file name. * @return false if open or initial write failed. */ public boolean start(String file) { boolean ok = true; try { out = new BufferedOutputStream(new FileOutputStream(file)); ok = start(out); closeStream = true; } catch (IOException e) { ok = false; } return started = ok; } /** * Analyzes image colors and creates color map. */ protected void analyzePixels() { int len = pixels.length; int nPix = len / 3; indexedPixels = new byte[nPix]; NeuQuant nq = new NeuQuant(pixels, len, sample); // initialize quantizer colorTab = nq.process(); // create reduced palette // convert map from BGR to RGB for (int i = 0; i < colorTab.length; i += 3) { byte temp = colorTab[i]; colorTab[i] = colorTab[i + 2]; colorTab[i + 2] = temp; usedEntry[i / 3] = false; } // map image pixels to new palette int k = 0; for (int i = 0; i < nPix; i++) { int index = nq.map(pixels[k++] & 0xff, pixels[k++] & 0xff, pixels[k++] & 0xff); usedEntry[index] = true; indexedPixels[i] = (byte) index; } pixels = null; colorDepth = 8; palSize = 7; // get closest match to transparent color if specified if (transparent != null) { transIndex = findClosest(transparent); } } /** * Returns index of palette color closest to c * */ protected int findClosest(Color c) { if (colorTab == null) return -1; int r = c.getRed(); int g = c.getGreen(); int b = c.getBlue(); int minpos = 0; int dmin = 256 * 256 * 256; int len = colorTab.length; for (int i = 0; i < len;) { int dr = r - (colorTab[i++] & 0xff); int dg = g - (colorTab[i++] & 0xff); int db = b - (colorTab[i] & 0xff); int d = dr * dr + dg * dg + db * db; int index = i / 3; if (usedEntry[index] && (d < dmin)) { dmin = d; minpos = index; } i++; } return minpos; } /** * Extracts image pixels into byte array "pixels" */ protected void getImagePixels() { int w = image.getWidth(); int h = image.getHeight(); int type = image.getType(); if ((w != width) || (h != height) || (type != BufferedImage.TYPE_3BYTE_BGR)) { // create new image with right size/format BufferedImage temp = new BufferedImage(width, height, BufferedImage.TYPE_3BYTE_BGR); Graphics2D g = temp.createGraphics(); g.drawImage(image, 0, 0, null); image = temp; } pixels = ((DataBufferByte) image.getRaster().getDataBuffer()).getData(); } /** * Writes Graphic Control Extension */ protected void writeGraphicCtrlExt() throws IOException { out.write(0x21); // extension introducer out.write(0xf9); // GCE label out.write(4); // data block size int transp, disp; if (transparent == null) { transp = 0; disp = 0; // dispose = no action } else { transp = 1; disp = 2; // force clear if using transparent color } if (dispose >= 0) { disp = dispose & 7; // user override } disp <<= 2; // packed fields out.write(0 | // 1:3 reserved disp | // 4:6 disposal 0 | // 7 user input - 0 = none transp); // 8 transparency flag writeShort(delay); // delay x 1/100 sec out.write(transIndex); // transparent color index out.write(0); // block terminator } /** * Writes Image Descriptor */ protected void writeImageDesc() throws IOException { out.write(0x2c); // image separator writeShort(0); // image position x,y = 0,0 writeShort(0); writeShort(width); // image size writeShort(height); // packed fields if (firstFrame) { // no LCT - GCT is used for first (or only) frame out.write(0); } else { // specify normal LCT out.write(0x80 | // 1 local color table 1=yes 0 | // 2 interlace - 0=no 0 | // 3 sorted - 0=no 0 | // 4-5 reserved palSize); // 6-8 size of color table } } /** * Writes Logical Screen Descriptor */ protected void writeLSD() throws IOException { // logical screen size writeShort(width); writeShort(height); // packed fields out.write((0x80 | // 1 : global color table flag = 1 (gct used) 0x70 | // 2-4 : color resolution = 7 0x00 | // 5 : gct sort flag = 0 palSize)); // 6-8 : gct size out.write(0); // background color index out.write(0); // pixel aspect ratio - assume 1:1 } /** * Writes Netscape application extension to define * repeat count. */ protected void writeNetscapeExt() throws IOException { out.write(0x21); // extension introducer out.write(0xff); // app extension label out.write(11); // block size writeString("NETSCAPE" + "2.0"); // app id + auth code out.write(3); // sub-block size out.write(1); // loop sub-block id writeShort(repeat); // loop count (extra iterations, 0=repeat forever) out.write(0); // block terminator } /** * Writes color table */ protected void writePalette() throws IOException { out.write(colorTab, 0, colorTab.length); int n = (3 * 256) - colorTab.length; for (int i = 0; i < n; i++) { out.write(0); } } /** * Encodes and writes pixel data */ protected void writePixels() throws IOException { LZWEncoder encoder = new LZWEncoder(width, height, indexedPixels, colorDepth); encoder.encode(out); } /** * Write 16-bit value to output stream, LSB first */ protected void writeShort(int value) throws IOException { out.write(value & 0xff); out.write((value >> 8) & 0xff); } /** * Writes string to output stream */ protected void writeString(String s) throws IOException { for (int i = 0; i < s.length(); i++) { out.write((byte) s.charAt(i)); } } }

2)LZWEncoder类

import java.io.OutputStream;
import java.io.IOException;

//==============================================================================
//  Adapted from Jef Poskanzer's Java port by way of J. M. G. Elliott.
//  K Weiner 12/00

class LZWEncoder {

 private static final int EOF = -1;

 private int imgW, imgH;
 private byte[] pixAry;
 private int initCodeSize;
 private int remaining;
 private int curPixel;

 // GIFCOMPR.C       - GIF Image compression routines
 //
 // Lempel-Ziv compression based on 'compress'.  GIF modifications by
 // David Rowley ([email protected])

 // General DEFINEs

 static final int BITS = 12;

 static final int HSIZE = 5003; // 80% occupancy

 // GIF Image compression - modified 'compress'
 //
 // Based on: compress.c - File compression ala IEEE Computer, June 1984.
 //
 // By Authors:  Spencer W. Thomas      (decvax!harpo!utah-cs!utah-gr!thomas)
 //              Jim McKie              (decvax!mcvax!jim)
 //              Steve Davies           (decvax!vax135!petsd!peora!srd)
 //              Ken Turkowski          (decvax!decwrl!turtlevax!ken)
 //              James A. Woods         (decvax!ihnp4!ames!jaw)
 //              Joe Orost              (decvax!vax135!petsd!joe)

 int n_bits; // number of bits/code
 int maxbits = BITS; // user settable max # bits/code
 int maxcode; // maximum code, given n_bits
 int maxmaxcode = 1 << BITS; // should NEVER generate this code

 int[] htab = new int[HSIZE];
 int[] codetab = new int[HSIZE];

 int hsize = HSIZE; // for dynamic table sizing

 int free_ent = 0; // first unused entry

 // block compression parameters -- after all codes are used up,
 // and compression rate changes, start over.
 boolean clear_flg = false;

 // Algorithm:  use open addressing double hashing (no chaining) on the
 // prefix code / next character combination.  We do a variant of Knuth's
 // algorithm D (vol. 3, sec. 6.4) along with G. Knott's relatively-prime
 // secondary probe.  Here, the modular division first probe is gives way
 // to a faster exclusive-or manipulation.  Also do block compression with
 // an adaptive reset, whereby the code table is cleared when the compression
 // ratio decreases, but after the table fills.  The variable-length output
 // codes are re-sized at this point, and a special CLEAR code is generated
 // for the decompressor.  Late addition:  construct the table according to
 // file size for noticeable speed improvement on small files.  Please direct
 // questions about this implementation to ames!jaw.

 int g_init_bits;

 int ClearCode;
 int EOFCode;

 // output
 //
 // Output the given code.
 // Inputs:
 //      code:   A n_bits-bit integer.  If == -1, then EOF.  This assumes
 //              that n_bits =< wordsize - 1.
 // Outputs:
 //      Outputs code to the file.
 // Assumptions:
 //      Chars are 8 bits long.
 // Algorithm:
 //      Maintain a BITS character long buffer (so that 8 codes will
 // fit in it exactly).  Use the VAX insv instruction to insert each
 // code in turn.  When the buffer fills up empty it and start over.

 int cur_accum = 0;
 int cur_bits = 0;

 int masks[] =
  {
   0x0000,
   0x0001,
   0x0003,
   0x0007,
   0x000F,
   0x001F,
   0x003F,
   0x007F,
   0x00FF,
   0x01FF,
   0x03FF,
   0x07FF,
   0x0FFF,
   0x1FFF,
   0x3FFF,
   0x7FFF,
   0xFFFF };

 // Number of characters so far in this 'packet'
 int a_count;

 // Define the storage for the packet accumulator
 byte[] accum = new byte[256];

 //----------------------------------------------------------------------------
 LZWEncoder(int width, int height, byte[] pixels, int color_depth) {
  imgW = width;
  imgH = height;
  pixAry = pixels;
  initCodeSize = Math.max(2, color_depth);
 }
 
 // Add a character to the end of the current packet, and if it is 254
 // characters, flush the packet to disk.
 void char_out(byte c, OutputStream outs) throws IOException {
  accum[a_count++] = c;
  if (a_count >= 254)
   flush_char(outs);
 }
 
 // Clear out the hash table

 // table clear for block compress
 void cl_block(OutputStream outs) throws IOException {
  cl_hash(hsize);
  free_ent = ClearCode + 2;
  clear_flg = true;

  output(ClearCode, outs);
 }
 
 // reset code table
 void cl_hash(int hsize) {
  for (int i = 0; i < hsize; ++i)
   htab[i] = -1;
 }
 
 void compress(int init_bits, OutputStream outs) throws IOException {
  int fcode;
  int i /* = 0 */;
  int c;
  int ent;
  int disp;
  int hsize_reg;
  int hshift;

  // Set up the globals:  g_init_bits - initial number of bits
  g_init_bits = init_bits;

  // Set up the necessary values
  clear_flg = false;
  n_bits = g_init_bits;
  maxcode = MAXCODE(n_bits);

  ClearCode = 1 << (init_bits - 1);
  EOFCode = ClearCode + 1;
  free_ent = ClearCode + 2;

  a_count = 0; // clear packet

  ent = nextPixel();

  hshift = 0;
  for (fcode = hsize; fcode < 65536; fcode *= 2)
   ++hshift;
  hshift = 8 - hshift; // set hash code range bound

  hsize_reg = hsize;
  cl_hash(hsize_reg); // clear hash table

  output(ClearCode, outs);

  outer_loop : while ((c = nextPixel()) != EOF) {
   fcode = (c << maxbits) + ent;
   i = (c << hshift) ^ ent; // xor hashing

   if (htab[i] == fcode) {
    ent = codetab[i];
    continue;
   } else if (htab[i] >= 0) // non-empty slot
    {
    disp = hsize_reg - i; // secondary hash (after G. Knott)
    if (i == 0)
     disp = 1;
    do {
     if ((i -= disp) < 0)
      i += hsize_reg;

     if (htab[i] == fcode) {
      ent = codetab[i];
      continue outer_loop;
     }
    } while (htab[i] >= 0);
   }
   output(ent, outs);
   ent = c;
   if (free_ent < maxmaxcode) {
    codetab[i] = free_ent++; // code -> hashtable
    htab[i] = fcode;
   } else
    cl_block(outs);
  }
  // Put out the final code.
  output(ent, outs);
  output(EOFCode, outs);
 }
 
 //----------------------------------------------------------------------------
 void encode(OutputStream os) throws IOException {
  os.write(initCodeSize); // write "initial code size" byte

  remaining = imgW * imgH; // reset navigation variables
  curPixel = 0;

  compress(initCodeSize + 1, os); // compress and write the pixel data

  os.write(0); // write block terminator
 }
 
 // Flush the packet to disk, and reset the accumulator
 void flush_char(OutputStream outs) throws IOException {
  if (a_count > 0) {
   outs.write(a_count);
   outs.write(accum, 0, a_count);
   a_count = 0;
  }
 }
 
 final int MAXCODE(int n_bits) {
  return (1 << n_bits) - 1;
 }
 
 //----------------------------------------------------------------------------
 // Return the next pixel from the image
 //----------------------------------------------------------------------------
 private int nextPixel() {
  if (remaining == 0)
   return EOF;

  --remaining;

  byte pix = pixAry[curPixel++];

  return pix & 0xff;
 }
 
 void output(int code, OutputStream outs) throws IOException {
  cur_accum &= masks[cur_bits];

  if (cur_bits > 0)
   cur_accum |= (code << cur_bits);
  else
   cur_accum = code;

  cur_bits += n_bits;

  while (cur_bits >= 8) {
   char_out((byte) (cur_accum & 0xff), outs);
   cur_accum >>= 8;
   cur_bits -= 8;
  }

  // If the next entry is going to be too big for the code size,
  // then increase it, if possible.
  if (free_ent > maxcode || clear_flg) {
   if (clear_flg) {
    maxcode = MAXCODE(n_bits = g_init_bits);
    clear_flg = false;
   } else {
    ++n_bits;
    if (n_bits == maxbits)
     maxcode = maxmaxcode;
    else
     maxcode = MAXCODE(n_bits);
   }
  }

  if (code == EOFCode) {
   // At EOF, write the rest of the buffer.
   while (cur_bits > 0) {
    char_out((byte) (cur_accum & 0xff), outs);
    cur_accum >>= 8;
    cur_bits -= 8;
   }

   flush_char(outs);
  }
 }
}

3)NeuQuant类

/* NeuQuant Neural-Net Quantization Algorithm
 * ------------------------------------------
 *
 * Copyright (c) 1994 Anthony Dekker
 *
 * NEUQUANT Neural-Net quantization algorithm by Anthony Dekker, 1994.
 * See "Kohonen neural networks for optimal colour quantization"
 * in "Network: Computation in Neural Systems" Vol. 5 (1994) pp 351-367.
 * for a discussion of the algorithm.
 *
 * Any party obtaining a copy of these files from the author, directly or
 * indirectly, is granted, free of charge, a full and unrestricted irrevocable,
 * world-wide, paid up, royalty-free, nonexclusive right and license to deal
 * in this software and documentation files (the "Software"), including without
 * limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons who receive
 * copies from any such party to do so, with the only requirement being
 * that this copyright notice remain intact.
 */

// Ported to Java 12/00 K Weiner

public class NeuQuant {

 protected static final int netsize = 256; /* number of colours used */

 /* four primes near 500 - assume no image has a length so large */
 /* that it is divisible by all four primes */
 protected static final int prime1 = 499;
 protected static final int prime2 = 491;
 protected static final int prime3 = 487;
 protected static final int prime4 = 503;

 protected static final int minpicturebytes = (3 * prime4);
 /* minimum size for input image */

 /* Program Skeleton
    ----------------
    [select samplefac in range 1..30]
    [read image from input file]
    pic = (unsigned char*) malloc(3*width*height);
    initnet(pic,3*width*height,samplefac);
    learn();
    unbiasnet();
    [write output image header, using writecolourmap(f)]
    inxbuild();
    write output image using inxsearch(b,g,r)      */

 /* Network Definitions
    ------------------- */

 protected static final int maxnetpos = (netsize - 1);
 protected static final int netbiasshift = 4; /* bias for colour values */
 protected static final int ncycles = 100; /* no. of learning cycles */

 /* defs for freq and bias */
 protected static final int intbiasshift = 16; /* bias for fractions */
 protected static final int intbias = (((int) 1) << intbiasshift);
 protected static final int gammashift = 10; /* gamma = 1024 */
 protected static final int gamma = (((int) 1) << gammashift);
 protected static final int betashift = 10;
 protected static final int beta = (intbias >> betashift); /* beta = 1/1024 */
 protected static final int betagamma =
  (intbias << (gammashift - betashift));

 /* defs for decreasing radius factor */
 protected static final int initrad = (netsize >> 3); /* for 256 cols, radius starts */
 protected static final int radiusbiasshift = 6; /* at 32.0 biased by 6 bits */
 protected static final int radiusbias = (((int) 1) << radiusbiasshift);
 protected static final int initradius = (initrad * radiusbias); /* and decreases by a */
 protected static final int radiusdec = 30; /* factor of 1/30 each cycle */

 /* defs for decreasing alpha factor */
 protected static final int alphabiasshift = 10; /* alpha starts at 1.0 */
 protected static final int initalpha = (((int) 1) << alphabiasshift);

 protected int alphadec; /* biased by 10 bits */

 /* radbias and alpharadbias used for radpower calculation */
 protected static final int radbiasshift = 8;
 protected static final int radbias = (((int) 1) << radbiasshift);
 protected static final int alpharadbshift = (alphabiasshift + radbiasshift);
 protected static final int alpharadbias = (((int) 1) << alpharadbshift);

 /* Types and Global Variables
 -------------------------- */

 protected byte[] thepicture; /* the input image itself */
 protected int lengthcount; /* lengthcount = H*W*3 */

 protected int samplefac; /* sampling factor 1..30 */

 //   typedef int pixel[4];                /* BGRc */
 protected int[][] network; /* the network itself - [netsize][4] */

 protected int[] netindex = new int[256];
 /* for network lookup - really 256 */

 protected int[] bias = new int[netsize];
 /* bias and freq arrays for learning */
 protected int[] freq = new int[netsize];
 protected int[] radpower = new int[initrad];
 /* radpower for precomputation */

 /* Initialise network in range (0,0,0) to (255,255,255) and set parameters
    ----------------------------------------------------------------------- */
 public NeuQuant(byte[] thepic, int len, int sample) {

  int i;
  int[] p;

  thepicture = thepic;
  lengthcount = len;
  samplefac = sample;

  network = new int[netsize][];
  for (i = 0; i < netsize; i++) {
   network[i] = new int[4];
   p = network[i];
   p[0] = p[1] = p[2] = (i << (netbiasshift + 8)) / netsize;
   freq[i] = intbias / netsize; /* 1/netsize */
   bias[i] = 0;
  }
 }
 
 public byte[] colorMap() {
  byte[] map = new byte[3 * netsize];
  int[] index = new int[netsize];
  for (int i = 0; i < netsize; i++)
   index[network[i][3]] = i;
  int k = 0;
  for (int i = 0; i < netsize; i++) {
   int j = index[i];
   map[k++] = (byte) (network[j][0]);
   map[k++] = (byte) (network[j][1]);
   map[k++] = (byte) (network[j][2]);
  }
  return map;
 }
 
 /* Insertion sort of network and building of netindex[0..255] (to do after unbias)
    ------------------------------------------------------------------------------- */
 public void inxbuild() {

  int i, j, smallpos, smallval;
  int[] p;
  int[] q;
  int previouscol, startpos;

  previouscol = 0;
  startpos = 0;
  for (i = 0; i < netsize; i++) {
   p = network[i];
   smallpos = i;
   smallval = p[1]; /* index on g */
   /* find smallest in i..netsize-1 */
   for (j = i + 1; j < netsize; j++) {
    q = network[j];
    if (q[1] < smallval) { /* index on g */
     smallpos = j;
     smallval = q[1]; /* index on g */
    }
   }
   q = network[smallpos];
   /* swap p (i) and q (smallpos) entries */
   if (i != smallpos) {
    j = q[0];
    q[0] = p[0];
    p[0] = j;
    j = q[1];
    q[1] = p[1];
    p[1] = j;
    j = q[2];
    q[2] = p[2];
    p[2] = j;
    j = q[3];
    q[3] = p[3];
    p[3] = j;
   }
   /* smallval entry is now in position i */
   if (smallval != previouscol) {
    netindex[previouscol] = (startpos + i) >> 1;
    for (j = previouscol + 1; j < smallval; j++)
     netindex[j] = i;
    previouscol = smallval;
    startpos = i;
   }
  }
  netindex[previouscol] = (startpos + maxnetpos) >> 1;
  for (j = previouscol + 1; j < 256; j++)
   netindex[j] = maxnetpos; /* really 256 */
 }
 
 /* Main Learning Loop
    ------------------ */
 public void learn() {

  int i, j, b, g, r;
  int radius, rad, alpha, step, delta, samplepixels;
  byte[] p;
  int pix, lim;

  if (lengthcount < minpicturebytes)
   samplefac = 1;
  alphadec = 30 + ((samplefac - 1) / 3);
  p = thepicture;
  pix = 0;
  lim = lengthcount;
  samplepixels = lengthcount / (3 * samplefac);
  delta = samplepixels / ncycles;
  alpha = initalpha;
  radius = initradius;

  rad = radius >> radiusbiasshift;
  if (rad <= 1)
   rad = 0;
  for (i = 0; i < rad; i++)
   radpower[i] =
    alpha * (((rad * rad - i * i) * radbias) / (rad * rad));

  //fprintf(stderr,"beginning 1D learning: initial radius=%d/n", rad);

  if (lengthcount < minpicturebytes)
   step = 3;
  else if ((lengthcount % prime1) != 0)
   step = 3 * prime1;
  else {
   if ((lengthcount % prime2) != 0)
    step = 3 * prime2;
   else {
    if ((lengthcount % prime3) != 0)
     step = 3 * prime3;
    else
     step = 3 * prime4;
   }
  }

  i = 0;
  while (i < samplepixels) {
   b = (p[pix + 0] & 0xff) << netbiasshift;
   g = (p[pix + 1] & 0xff) << netbiasshift;
   r = (p[pix + 2] & 0xff) << netbiasshift;
   j = contest(b, g, r);

   altersingle(alpha, j, b, g, r);
   if (rad != 0)
    alterneigh(rad, j, b, g, r); /* alter neighbours */

   pix += step;
   if (pix >= lim)
    pix -= lengthcount;

   i++;
   if (delta == 0)
    delta = 1;
   if (i % delta == 0) {
    alpha -= alpha / alphadec;
    radius -= radius / radiusdec;
    rad = radius >> radiusbiasshift;
    if (rad <= 1)
     rad = 0;
    for (j = 0; j < rad; j++)
     radpower[j] =
      alpha * (((rad * rad - j * j) * radbias) / (rad * rad));
   }
  }
  //fprintf(stderr,"finished 1D learning: final alpha=%f !/n",((float)alpha)/initalpha);
 }
 
 /* Search for BGR values 0..255 (after net is unbiased) and return colour index
    ---------------------------------------------------------------------------- */
 public int map(int b, int g, int r) {

  int i, j, dist, a, bestd;
  int[] p;
  int best;

  bestd = 1000; /* biggest possible dist is 256*3 */
  best = -1;
  i = netindex[g]; /* index on g */
  j = i - 1; /* start at netindex[g] and work outwards */

  while ((i < netsize) || (j >= 0)) {
   if (i < netsize) {
    p = network[i];
    dist = p[1] - g; /* inx key */
    if (dist >= bestd)
     i = netsize; /* stop iter */
    else {
     i++;
     if (dist < 0)
      dist = -dist;
     a = p[0] - b;
     if (a < 0)
      a = -a;
     dist += a;
     if (dist < bestd) {
      a = p[2] - r;
      if (a < 0)
       a = -a;
      dist += a;
      if (dist < bestd) {
       bestd = dist;
       best = p[3];
      }
     }
    }
   }
   if (j >= 0) {
    p = network[j];
    dist = g - p[1]; /* inx key - reverse dif */
    if (dist >= bestd)
     j = -1; /* stop iter */
    else {
     j--;
     if (dist < 0)
      dist = -dist;
     a = p[0] - b;
     if (a < 0)
      a = -a;
     dist += a;
     if (dist < bestd) {
      a = p[2] - r;
      if (a < 0)
       a = -a;
      dist += a;
      if (dist < bestd) {
       bestd = dist;
       best = p[3];
      }
     }
    }
   }
  }
  return (best);
 }
 public byte[] process() {
  learn();
  unbiasnet();
  inxbuild();
  return colorMap();
 }
 
 /* Unbias network to give byte values 0..255 and record position i to prepare for sort
    ----------------------------------------------------------------------------------- */
 public void unbiasnet() {

  int i;

  for (i = 0; i < netsize; i++) {
   network[i][0] >>= netbiasshift;
   network[i][1] >>= netbiasshift;
   network[i][2] >>= netbiasshift;
   network[i][3] = i; /* record colour no */
  }
 }
 
 /* Move adjacent neurons by precomputed alpha*(1-((i-j)^2/[r]^2)) in radpower[|i-j|]
    --------------------------------------------------------------------------------- */
 protected void alterneigh(int rad, int i, int b, int g, int r) {

  int j, k, lo, hi, a, m;
  int[] p;

  lo = i - rad;
  if (lo < -1)
   lo = -1;
  hi = i + rad;
  if (hi > netsize)
   hi = netsize;

  j = i + 1;
  k = i - 1;
  m = 1;
  while ((j < hi) || (k > lo)) {
   a = radpower[m++];
   if (j < hi) {
    p = network[j++];
    try {
     p[0] -= (a * (p[0] - b)) / alpharadbias;
     p[1] -= (a * (p[1] - g)) / alpharadbias;
     p[2] -= (a * (p[2] - r)) / alpharadbias;
    } catch (Exception e) {
    } // prevents 1.3 miscompilation
   }
   if (k > lo) {
    p = network[k--];
    try {
     p[0] -= (a * (p[0] - b)) / alpharadbias;
     p[1] -= (a * (p[1] - g)) / alpharadbias;
     p[2] -= (a * (p[2] - r)) / alpharadbias;
    } catch (Exception e) {
    }
   }
  }
 }
 
 /* Move neuron i towards biased (b,g,r) by factor alpha
    ---------------------------------------------------- */
 protected void altersingle(int alpha, int i, int b, int g, int r) {

  /* alter hit neuron */
  int[] n = network[i];
  n[0] -= (alpha * (n[0] - b)) / initalpha;
  n[1] -= (alpha * (n[1] - g)) / initalpha;
  n[2] -= (alpha * (n[2] - r)) / initalpha;
 }
 
 /* Search for biased BGR values
    ---------------------------- */
 protected int contest(int b, int g, int r) {

  /* finds closest neuron (min dist) and updates freq */
  /* finds best neuron (min dist-bias) and returns position */
  /* for frequently chosen neurons, freq[i] is high and bias[i] is negative */
  /* bias[i] = gamma*((1/netsize)-freq[i]) */

  int i, dist, a, biasdist, betafreq;
  int bestpos, bestbiaspos, bestd, bestbiasd;
  int[] n;

  bestd = ~(((int) 1) << 31);
  bestbiasd = bestd;
  bestpos = -1;
  bestbiaspos = bestpos;

  for (i = 0; i < netsize; i++) {
   n = network[i];
   dist = n[0] - b;
   if (dist < 0)
    dist = -dist;
   a = n[1] - g;
   if (a < 0)
    a = -a;
   dist += a;
   a = n[2] - r;
   if (a < 0)
    a = -a;
   dist += a;
   if (dist < bestd) {
    bestd = dist;
    bestpos = i;
   }
   biasdist = dist - ((bias[i]) >> (intbiasshift - netbiasshift));
   if (biasdist < bestbiasd) {
    bestbiasd = biasdist;
    bestbiaspos = i;
   }
   betafreq = (freq[i] >> betashift);
   freq[i] -= betafreq;
   bias[i] += (betafreq << gammashift);
  }
  freq[bestpos] += beta;
  bias[bestpos] -= betagamma;
  return (bestbiaspos);
 }
}

 

你可能感兴趣的:(Java编程(Java,Programming))