实在是太喜欢Richard Szeliski的这本书了,每一章节(after chapter3)都详述了该研究方向比较新的成果,还有许多许多的reference,如果你感兴趣,完全可以看那些参考论文
g(x) = af (x) +b a和b有时被认为用来控制对比度和亮度,在我的opencv栏目有个例子是简单的对比度和亮度变换,用的就是这个公式
g(x) = a(x)f (x) + b(x) a,b不一定是常数,可以是空间上的函数
g(x) = (1 − α)f0(x) + αf1(x) α from0→1 可以实现两幅图像的淡入淡出
在OpenCV里有addWeighted( src1, alpha, src2, beta, 0.0, dst);这个函数,就是实现这个式子的
g(x) = [f(x)]1/γ 这是伽马校正属于幂变换,通常用于图像预处理阶段,对于大多数数字摄像机来说γ≈2.2
除了伽马校正,幂变换在控制对比度也很有用,可以取不同的γ试一试
g(x) = L -1 -f(x) 灰度级属于[0,L-1] 这是图像反转 可用于增强嵌入与图像暗色区域的白色或灰色细节
g(x) = clog(1+f(x)) 对数变换
public int[][] Histogram_Equalization(int[][] oldmat)
{
int[][] new_mat = new int[height][width];
int[] tmp = new int[256];
for(int i = 0;i < width;i++){
for(int j = 0;j < height;j++){
//System.out.println(oldmat[j][i]);
int index = oldmat[j][i];
tmp[index]++;
}
}
float[] C = new float[256];
int total = width*height;
//计算累积函数
for(int i = 0;i < 256 ; i++){
if(i == 0)
C[i] = 1.0f * tmp[i] / total;
else
C[i] = C[i-1] + 1.0f * tmp[i] / total;
}
for(int i = 0;i < width;i++){
for(int j = 0;j < height;j++){
new_mat[j][i] = (int)(C[oldmat[j][i]] * 255);
new_mat[j][i] = new_mat[j][i] + (new_mat[j][i] << 8) + (new_mat[j][i] << 16);
//System.out.println(new_mat[j][i]);
}
}
return new_mat;
}
/*
* CLAHE
* 自适应直方图均衡化
*/
public int[][] AHE(int[][] oldmat,int pblock)
{
int block = pblock;
//将图像均匀分成等矩形大小,8行8列64个块是常用的选择
int width_block = width/block;
int height_block = height/block;
//存储各个直方图
int[][] tmp = new int[block*block][256];
//存储累积函数
float[][] C = new float[block*block][256];
//计算累积函数
for(int i = 0 ; i < block ; i ++)
{
for(int j = 0 ; j < block ; j++)
{
int start_x = i * width_block;
int end_x = start_x + width_block;
int start_y = j * height_block;
int end_y = start_y + height_block;
int num = i+block*j;
int total = width_block * height_block;
for(int ii = start_x ; ii < end_x ; ii++)
{
for(int jj = start_y ; jj < end_y ; jj++)
{
int index = oldmat[jj][ii];
tmp[num][index]++;
}
}
//裁剪操作
int average = width_block * height_block / 255;
int LIMIT = 4 * average;
int steal = 0;
for(int k = 0 ; k < 256 ; k++)
{
if(tmp[num][k] > LIMIT){
steal += tmp[num][k] - LIMIT;
tmp[num][k] = LIMIT;
}
}
int bonus = steal/256;
//hand out the steals averagely
for(int k = 0 ; k < 256 ; k++)
{
tmp[num][k] += bonus;
}
//计算累积分布直方图
for(int k = 0 ; k < 256 ; k++)
{
if( k == 0)
C[num][k] = 1.0f * tmp[num][k] / total;
else
C[num][k] = C[num][k-1] + 1.0f * tmp[num][k] / total;
}
}
}
int[][] new_mat = new int[height][width];
//计算变换后的像素值
//根据像素点的位置,选择不同的计算方法
for(int i = 0 ; i < width; i++)
{
for(int j = 0 ; j < height; j++)
{
//four coners
if(i <= width_block/2 && j <= height_block/2)
{
int num = 0;
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}else if(i <= width_block/2 && j >= ((block-1)*height_block + height_block/2)){
int num = block*(block-1);
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}else if(i >= ((block-1)*width_block+width_block/2) && j <= height_block/2){
int num = block-1;
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}else if(i >= ((block-1)*width_block+width_block/2) && j >= ((block-1)*height_block + height_block/2)){
int num = block*block-1;
new_mat[j][i] = (int)(C[num][oldmat[j][i]] * 255);
}
//four edges except coners
else if( i <= width_block/2 )
{
//线性插值
int num_i = 0;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + block;
float p = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}else if( i >= ((block-1)*width_block+width_block/2)){
//线性插值
int num_i = block-1;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + block;
float p = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}else if( j <= height_block/2 ){
//线性插值
int num_i = (i - width_block/2)/width_block;
int num_j = 0;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
float p = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}else if( j >= ((block-1)*height_block + height_block/2) ){
//线性插值
int num_i = (i - width_block/2)/width_block;
int num_j = block-1;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
float p = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float q = 1-p;
new_mat[j][i] = (int)((q*C[num1][oldmat[j][i]]+ p*C[num2][oldmat[j][i]])* 255);
}
//inner area
else{
int num_i = (i - width_block/2)/width_block;
int num_j = (j - height_block/2)/height_block;
int num1 = num_j*block + num_i;
int num2 = num1 + 1;
int num3 = num1 + block;
int num4 = num2 + block;
float u = (i - (num_i*width_block+width_block/2))/(1.0f*width_block);
float v = (j - (num_j*height_block+height_block/2))/(1.0f*height_block);
new_mat[j][i] = (int)((u*v*C[num4][oldmat[j][i]] +
(1-v)*(1-u)*C[num1][oldmat[j][i]] +
u*(1-v)*C[num2][oldmat[j][i]] +
v*(1-u)*C[num3][oldmat[j][i]]) * 255);
}
new_mat[j][i] = new_mat[j][i] + (new_mat[j][i] << 8) + (new_mat[j][i] << 16);
}
}
return new_mat;
}
Write a simple application to change the color balance of an imageby multiplying each color value by a different user-specified constant. If you want to getfancy, you can make this application interactive, with sliders.
我只是很简单地将颜色乘以系数,有slider,比较方便~~
#include "opencv2/highgui/highgui.hpp"
#include
using namespace cv;
int alpha = 50;
Mat image,new_image;
static void change_color(int, void*)
{
for( int y = 0; y < image.rows; y++ )
for( int x = 0; x < image.cols; x++ )
for( int c = 0; c < 3; c++ )
new_image.at(y,x)[c] = saturate_cast( alpha/50.0 *( image.at(y,x)[c] ));
imshow("Image", new_image);
}
int main( int, char** argv )
{
image = imread( argv[1] );
new_image = Mat::zeros( image.size(), image.type() );
namedWindow("Image", 1);
createTrackbar( "pick:", "Image", &alpha, 100, change_color);
change_color(0, 0);
waitKey();
return 0;
}
In[1]:= |
![]() |
Out[1]= | ![]() |
In[2]:= |
![]() |
Out[2]= | ![]() |
K =vhT
1 | 1 | 1 |
1 | -8 | 1 |
1 | 1 | 1 |
0 | 1 | 0 |
1 | -4 | 1 |
0 | 1 | 0 |
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
#include
using namespace cv;
int main( int, char** argv )
{
Mat src, src_gray;
Mat grad;
const char* window_name = "Sobel Demo - Simple Edge Detector";
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
/// Convert it to gray
cvtColor( src, src_gray, CV_RGB2GRAY );
/// Create window
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// Generate grad_x and grad_y
Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y;
/// Gradient X
Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );
convertScaleAbs( grad_x, abs_grad_x );
/// Gradient Y
Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );
convertScaleAbs( grad_y, abs_grad_y );
/// Total Gradient (approximate)
addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad );
imshow( window_name, grad );
waitKey(0);
return 0;
}
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
#include
using namespace cv;
int main( int, char** argv )
{
Mat src, src_gray, dst;
int kernel_size = 3;
int scale = 1;
int delta = 0;
int ddepth = CV_16S;
const char* window_name = "Laplace Demo";
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
/// Remove noise by blurring with a Gaussian filter
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT );
/// Convert the image to grayscale
cvtColor( src, src_gray, CV_RGB2GRAY );
/// Create window
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// Apply Laplace function
Mat abs_dst;
Laplacian( src_gray, dst, ddepth, kernel_size, scale, delta, BORDER_DEFAULT );
convertScaleAbs( dst, abs_dst );
/// Show what you got
imshow( window_name, abs_dst );
waitKey(0);
return 0;
}
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
#include
using namespace cv;
int main ( int, char** argv )
{
/// Declare variables
Mat src, dst;
Mat kernel;
Point anchor;
double delta;
int ddepth;
int kernel_size;
const char* window_name = "filter2D Demo";
int c;
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
/// Create window
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// Initialize arguments for the filter
anchor = Point( -1, -1 );
delta = 0;
ddepth = -1;
/// Loop - Will filter the image with different kernel sizes each 0.5 seconds
int ind = 0;
for(;;)
{
c = waitKey(500);
/// Press 'ESC' to exit the program
if( (char)c == 27 )
{ break; }
/// Update kernel size for a normalized box filter
kernel_size = 3 + 2*( ind%5 );
kernel = Mat::ones( kernel_size, kernel_size, CV_32F )/ (float)(kernel_size*kernel_size);
/// Apply filter
filter2D(src, dst, ddepth , kernel, anchor, delta, BORDER_DEFAULT );
imshow( window_name, dst );
ind++;
}
return 0;
}
很容易发现有 s(i, j) = s(i−1, j) +s(i, j−1)−s(i−1, j−1) +f(i, j).
OpenCV有自带的计算积分图的函数integral 提供了更多选项,sum是和,sqsum是平方和图像,tilted是旋转45度的和
sum: the sum summation integral image
sqsum: the square sum integral image
tilted: image is rotated by 45 degrees and then its integral is calculated
//OpenCV双边滤波 //src:输入图像 //dst:输入图像 //滤波模板半径 //颜色空间标准差 //坐标空间标准差 bilateralFilter(src,dst,5,10.0,2.0);
//关于滤波,还可以参考这里
Iterated adaptive smoothing and anisotropic diffusion(迭代自适应平滑和各向异性扩散)
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
#include
using namespace cv;
/// Global variables
Mat src, erosion_dst, dilation_dst;
int erosion_elem = 0;
int erosion_size = 0;
int dilation_elem = 0;
int dilation_size = 0;
int const max_elem = 2;
int const max_kernel_size = 21;
/** Function Headers */
void Erosion( int, void* );
void Dilation( int, void* );
/**
* @function main
*/
int main( int, char** argv )
{
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
/// Create windows
namedWindow( "Erosion Demo", CV_WINDOW_AUTOSIZE );
namedWindow( "Dilation Demo", CV_WINDOW_AUTOSIZE );
cvMoveWindow( "Dilation Demo", src.cols, 0 );
/// Create Erosion Trackbar
createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Erosion Demo",
&erosion_elem, max_elem,
Erosion );
createTrackbar( "Kernel size:\n 2n +1", "Erosion Demo",
&erosion_size, max_kernel_size,
Erosion );
/// Create Dilation Trackbar
createTrackbar( "Element:\n 0: Rect \n 1: Cross \n 2: Ellipse", "Dilation Demo",
&dilation_elem, max_elem,
Dilation );
createTrackbar( "Kernel size:\n 2n +1", "Dilation Demo",
&dilation_size, max_kernel_size,
Dilation );
/// Default start
Erosion( 0, 0 );
Dilation( 0, 0 );
waitKey(0);
return 0;
}
/**
* @function Erosion
*/
void Erosion( int, void* )
{
int erosion_type = 0;
if( erosion_elem == 0 ){ erosion_type = MORPH_RECT; }
else if( erosion_elem == 1 ){ erosion_type = MORPH_CROSS; }
else if( erosion_elem == 2) { erosion_type = MORPH_ELLIPSE; }
Mat element = getStructuringElement( erosion_type,
Size( 2*erosion_size + 1, 2*erosion_size+1 ),
Point( erosion_size, erosion_size ) );
/// Apply the erosion operation
erode( src, erosion_dst, element );
imshow( "Erosion Demo", erosion_dst );
}
/**
* @function Dilation
*/
void Dilation( int, void* )
{
int dilation_type = 0;
if( dilation_elem == 0 ){ dilation_type = MORPH_RECT; }
else if( dilation_elem == 1 ){ dilation_type = MORPH_CROSS; }
else if( dilation_elem == 2) { dilation_type = MORPH_ELLIPSE; }
Mat element = getStructuringElement( dilation_type,
Size( 2*dilation_size + 1, 2*dilation_size+1 ),
Point( dilation_size, dilation_size ) );
/// Apply the dilation operation
dilate( src, dilation_dst, element );
imshow( "Dilation Demo", dilation_dst );
}
开运算
dst=open(src,element)=dilate(erode(src,element),element)
闭运算
dst=close(src,element)=erode(dilate(src,element),element)
形态梯度
dst=morph_grad(src,element)=dilate(src,element)-erode(src,element)
"顶帽"
dst=tophat(src,element)=src-open(src,element)
"黑帽"
dst=blackhat(src,element)=close(src,element)-src
临时图像 temp 在形态梯度以及对“顶帽”和“黑帽”操作时的 in-place 模式下需要。
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include
#include
using namespace cv;
/// Global variables
Mat src, dst;
int morph_elem = 0;
int morph_size = 0;
int morph_operator = 0;
int const max_operator = 4;
int const max_elem = 2;
int const max_kernel_size = 21;
const char* window_name = "Morphology Transformations Demo";
/** Function Headers */
void Morphology_Operations( int, void* );
/**
* @function main
*/
int main( int, char** argv )
{
/// Load an image
src = imread( argv[1] );
if( !src.data )
{ return -1; }
/// Create window
namedWindow( window_name, CV_WINDOW_AUTOSIZE );
/// Create Trackbar to select Morphology operation
createTrackbar("Operator:\n 0: Opening - 1: Closing \n 2: Gradient - 3: Top Hat \n 4: Black Hat", window_name, &morph_operator, max_operator, Morphology_Operations );
/// Create Trackbar to select kernel type
createTrackbar( "Element:\n 0: Rect - 1: Cross - 2: Ellipse", window_name,
&morph_elem, max_elem,
Morphology_Operations );
/// Create Trackbar to choose kernel size
createTrackbar( "Kernel size:\n 2n +1", window_name,
&morph_size, max_kernel_size,
Morphology_Operations );
/// Default start
Morphology_Operations( 0, 0 );
waitKey(0);
return 0;
}
/**
* @function Morphology_Operations
*/
void Morphology_Operations( int, void* )
{
// Since MORPH_X : 2,3,4,5 and 6
int operation = morph_operator + 2;
Mat element = getStructuringElement( morph_elem, Size( 2*morph_size + 1, 2*morph_size+1 ), Point( morph_size, morph_size ) );
/// Apply the specified morphology operation
morphologyEx( src, dst, operation, element );
imshow( window_name, dst );
}