- svm支持向量机实例--线性非线性实例代码可运行
fromsklearnimportsvmimportnumpyasnpimportsklearn#因为Python中的sklearn库也集成了SVM算法,所以在Python中一样可以使用支持向量机做分类#取数据集path=r'D:\svm\iris.data'#Iris.data的数据格式如下:共5列,前4列为样本特征,第5列为类别,分别有三种类别Iris-setosa,Iris-versicol
- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- 机器学习朴素贝叶斯算法——python详细代码解析(sklearn)
python机器学习ML
机器学习python算法sklearn朴素贝叶斯
朴素贝叶斯算法(NaiveBayesianalgorithm)是在贝叶斯算法的基础上假设特征变量相互独立的一种分类方法,是贝叶斯算法的简化,常用于文档分类和垃圾邮件过滤。当“特征变量相互独立”的假设条件能够被有效满足时,朴素贝叶斯算法具有算法比较简单、分类效率稳定、所需估计参数少、对缺失数据不敏感等种种优势。而在实务中“特征变量相互独立”的假设条件往往不能得到满足,这在一定程度上降低了贝叶斯分类算
- 储粮温度预测新方案!FEBL模型用代码实现:LSTM+注意力+岭回归的完整流程
Atlas Shepherd
Pythonpython深度学习机器学习
特征增强型宽度学习(FEBL)的模型,用于储粮温度预测任务。以下是代码的逐层解析和功能说明:1.依赖库导入importtorchimporttorch.nnasnnimporttorch.optimasoptimimportnumpyasnpimporttimefromsklearn.preprocessingimportMinMaxScalerfromsklearn.model_selectio
- 用 K-means 算法实现水果分堆
wh_xia_jun
AI+医疗算法kmeans机器学习
先看运行效果:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeans#生成模拟数据(两个高斯分布的混合点集)np.random.seed(42)X1=np.random.randn(100,2)+np.array([2,2])#第一簇数据,中心在(2,2)X2=np.random.randn(100,2)
- BSCAN 在糖尿病患者数据聚类分析中的应用
wh_xia_jun
AI+医疗机器学习支持向量机人工智能
完整代码:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportDBSCANfromsklearn.preprocessingimportStandardScalerfromsklearn.datasetsimportmake_blobs#设置随机种子,确保结果可复现np.random.seed(42)#1.生成模拟
- 分类模型(BERT)训练全流程
巴伦是只猫
人工智能分类bert数据挖掘
使用BERT实现分类模型的完整训练流程BERT(BidirectionalEncoderRepresentationsfromTransformers)是一种强大的预训练语言模型,在各种NLP任务中表现出色。下面我将详细梳理使用BERT实现文本分类模型的完整训练过程。1.准备工作1.1环境配置pipinstalltransformerstorchtensorflowpandassklearn1.2
- 机器学习数据预处理阶段为什么需要——归一化处理
参考:https://www.cnblogs.com/bjwu/p/8977141.html通常,在DataScience中,预处理数据有一个很关键的步骤就是数据的标准化。这里主要引用sklearn文档中的一些东西来说明,主要把各个标准化方法的应用场景以及优缺点总结概括,以来充当笔记。提升模型精度在机器学习算法的目标函数(例如SVM的RBF内核或线性模型的l1和l2正则化),许多学习算法中目标函数
- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- 数据质量是机器学习项目的核心痛点,AI技术能提供智能化解决方案。
zzywxc787
pythonpandasnumpy人工智能自动化运维AI编程
一、数据质量诊断系统(Python实现)importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearn.ensembleimportIsolationForestfromtensorflow.keras.modelsimportSequentialfromte
- 十种常用数据分析模型
耐思nice~
数据分析数据分析人工智能机器学习数学建模
1-线性回归(LinearRegression)场景:预测商品销售额优点:简单易用,结果易于解释缺点:假设线性关系,容易受到异常值影响概念:建立自变量和因变量之间线性关系的模型。公式:[y=b_0+b_1x_1+b_2x_2+...+b_nx_n]代码示例:importpandasaspdfromsklearn.linear_modelimportLinearRegressionfromsklea
- K近邻算法【python】【sklearn】
weixin_44985842
python近邻算法sklearn
0定义K近邻算法(K-NearestNeighbors,KNN)是一种基于实例的监督学习算法,主要用于分类和回归任务。其核心思想是:在特征空间中,对于待预测的样本,找到与其距离最近的k个已知样本(“邻居”),根据这k个邻居的类别(分类任务)或属性值(回归任务)来决定该样本的预测结果,,常用欧氏距离公式:对于两个n维样本点xi=(xi1,xi2,...,xin)x_i=(x_{i1},x_{i2},
- 学习笔记(33):matplotlib绘制简单图表-绘制混淆矩阵热图
宁儿数据安全
#机器学习学习笔记matplotlib
学习笔记(33):matplotlib绘制简单图表-绘制混淆矩阵热图一、绘制混淆矩阵热图代码解析1.1、导入必要的库importmatplotlib.pyplotaspltfromsklearn.metricsimportconfusion_matriximportseabornassnsmatplotlib.pyplot:Python中最常用的绘图库,用于创建各种图表confusion_matr
- 使用tensorflow的线性回归的例子(七)
lishaoan77
tensorflowtensorflow线性回归人工智能
L1与L2损失这个脚本展示如何用TensorFlow求解线性回归。在算法的收敛性中,理解损失函数的影响是很重要的。这里我们展示L1和L2损失函数是如何影响线性回归的收敛性的。我们使用iris数据集,但是我们将改变损失函数和学习速率来看收敛性的改变。importmatplotlib.pyplotaspltimportnumpyasnpimporttensorflowastffromsklearnim
- 3.多层感知机
温柔济沧海
深度学习深度学习人工智能多层感知机
3.1从零实现多层感知机#数据集导入importtorchimporttorchvisionfromtorchvisionimporttransformsimportmatplotlib.pyplotaspltfromtorch.utils.dataimportDataLoaderfromtorchimportnnfromtqdmimporttqdmfromsklearn.metricsimpor
- Aletheia 情感智能模型:完整实现
Aletheia情感智能模型,整合所有核心模块并解决之前指出的问题。这个实现包含完整的神经动力学系统、多模态情感融合、伦理约束场和量子意识接口。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.integrateimportodeintfromsklearn.decompositionimportPCAimporttorchimporttor
- 使用AutoKeras2.0的AutoModel进行结构化数据回归预测
1、FirstofAll:ReadTheFuckingSourceCodeimportautokerasasakimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportmean_squared_error#生成数据集np.random.seed(42)x=np.random.r
- 使用 Bank Churn 数据集进行二元分类
一、前言分类任务:预测客户是继续使用其帐户还是关闭帐户(例如,流失)项目地址:https://www.kaggle.com/competitions/playground-series-s4e1二、具体步骤(一)数据导入与预览importpandasaspdimportnumpyasnpimportmatplotlib.pylabaspltimportseabornassnsfromsklearn
- 线性回归 python代码
黄涵奕
python线性回归numpy机器学习开发语言
下面是一个线性回归模型的Python代码示例:importnumpyasnpfromsklearn.linear_modelimportLinearRegression#训练数据x=np.array([[1],[2],[3],[4],[5]])y=np.array([5,7,9,11,13])#建立模型reg=LinearRegression().fit(x,y)#预测reg.predict(np
- 深度学习篇---简单果实分类网络
下面我将提供一个使用Python从零实现果实分类模型的完整流程,包括数据准备、模型构建、训练和部署,不依赖任何深度学习框架,仅使用NumPy进行数值计算。1.数据准备与预处理首先需要准备果实图像数据集,将其分为好果和坏果两类,并进行预处理:importosimportnumpyasnpfromPILimportImagefromsklearn.model_selectionimporttrain_
- Python scikit-learn 【机器学习库】全面讲解
让AI成为我们的得力助手:《用Cursor玩转AI辅助编程——不写代码也能做软件开发》scikit-learn(简称sklearn)是Python最流行的机器学习库之一,提供简单高效的数据挖掘和数据分析工具。它基于NumPy、SciPy和Matplotlib构建,广泛应用于工业界和学术界。核心优势统一API设计:所有模型使用一致的接口(fit()、predict()、score())丰富的算法:覆
- python训练60天挑战-day51
DAY51复习日作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高kaggl的一个图像数据集;数据集地址:LungNoduleMalignancy肺结核良恶性判断三层卷积CNN做到的精度63%,现在需要实现提高。importosimportpandasaspdimportnumpyasnpfromsklearn.model_se
- Day36 复习日
cylat
python打卡深度学习机器学习人工智能python神经网络
目录一、对之前的信贷项目,利用神经网络训练下二、尝试进入nn.Module中,查看他的方法模型训练与评估相关参数管理相关模块管理相关设备相关钩子函数相关一、对之前的信贷项目,利用神经网络训练下importtorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.model_selectionimporttrain_test_splitfr
- 线性回归(Linear regression)算法详解
.30-06Springfield
人工智能算法详解算法线性回归回归python人工智能机器学习
文章目录一、线性回归基础概念1.1什么是线性回归1.2线性回归小例子二、sklearn中线性回归的API和参数2.1安装sklearn2.2LinearRegression2.3SGDRegresso2.4Lasso2.5Ridge2.6各个API的对比三、使用sklearn实现线性回归3.1程序概述3.2核心功能3.3关键技术细节3.4程序运行结果3.5代码结构一、线性回归基础概念1.1什么是线
- Python训练营-Day40
m0_72314023
python开发语言
importtorchimporttorch.nnasnnimporttorch.optimasoptimfromsklearn.model_selectionimporttrain_test_splitfromsklearn.preprocessingimportMinMaxScalerimporttimeimportmatplotlib.pyplotaspltfromtqdmimporttqd
- 用sklearn库中的算法对数据集进行训练和auc评估(个人学习笔记)
ZD困困困
python机器学习
本文为个人学习笔记,仅供学习参考,欢迎讨论,要是有哪里写的不对或有疑问的欢迎讨论。题目:运用已给数据集进行模型训练,使用逻辑回归、决策树、随机森林和AdaBoost几个算法进行训练,并打印各个算法训练后的auc评价指标。文章目录1.导入数据集①read_csv():读取数据并以某字符分隔。②merge():合并③drop():删除行或列④tolist():将数组或矩阵转换为列表⑤train_tes
- python学智能算法(十五)|机器学习朴素贝叶斯方法进阶-CountVectorizer多文本处理
西猫雷婶
人工智能机器学习python学习笔记机器学习python人工智能深度学习scikit-learn
【1】引言前序学习进程中,已经学习CountVectorizer文本处理的简单技巧,先相关文章链接为:python学智能算法(十四)|机器学习朴素贝叶斯方法进阶-CountVectorizer文本处理简单测试-CSDN博客此次继续深入,研究多文本的综合处理。【2】代码测试首先相对于单文本测试,直接将文本改成多行文本:#引入必要的模块fromsklearn.feature_extraction.te
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 【python数据分析】数据建模之Kmeans聚类
斑点鱼 SpotFish
python数据建模聚类python数据分析
K-means聚类:最常用的机器学习聚类算法,且为典型的基于距离的聚类算法。K均值:基于原型的、划分的距离技术,它试图发现用户指定个数(K)的簇以欧式距离作为相似度测度Kmeans聚类案例分析:make_blobs聚类数据生成器#导入模块from sklearn.cluster import KMeansfromsklearn.datasetsimportmake_blobs#创建数据x,y_tr
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p