- “显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象
步步咏凉天
计算机视觉人工智能
“显著性”(Saliency)是计算机视觉中的一个重要概念,主要指的是图像或视频中最吸引人注意力的区域或对象。它模拟的是人类视觉系统对视觉场景中“显著”区域的感知能力。显著性可以用于图像理解、目标检测、图像压缩、图像分割等多个任务。下面是对显著性在计算机视觉中的几个关键方面的解释:一、显著性检测(SaliencyDetection)显著性检测的目标是预测图像中最能吸引人注意的区域,通常输出一个与输
- SalFAU-Net:显著性目标检测的显著性融合注意U-Net
明初啥都能学会
目标检测人工智能计算机视觉
SalFAU-Net:显著性目标检测的显著性融合注意U-Net摘要IntroductionRelatedWorksSalFAU-Net:SaliencyFusionAttentionU-NetforSalientObjectDetection摘要显著目标检测(SOD)在计算机视觉中仍然是一个重要的任务,其应用范围从图像分割到自动驾驶。基于全卷积网络(FCN)的方法在过去几十年里在视觉显著性检测方面
- 论文鉴赏:孙等人采用基于MR(Manifoldranking,流行排序)的视觉显著性目标检测方法对绿色苹果图像进行处理并生成显著图,然后通过形态学处理和边缘检测等操作实现了果实的识别。
神笔馬良
mr计算机视觉人工智能
问题描述:孙等人采用基于MR(Manifoldranking,流行排序)的视觉显著性目标检测方法对绿色苹果图像进行处理并生成显著图,然后通过形态学处理和边缘检测等操作实现了果实的识别。请问这句话中的流行排序是什么,原理是什么,干什么用的。显著图是什么结果,可以用来干什么?问题解答:"流行排序"(ManifoldRanking,简称MR)是一种用于图像处理和计算机视觉中的视觉显著性检测方法。它基于图
- BASNet:Boundary-aware salient object detection
Kun Li
应用算法目标检测计算机视觉
CVPR2019开源论文|BASNet:关注边界的显著性检测本文提出一种基于深度监督学习的前景提取构架BASNet,其在边缘感知上有优异的表现。https://mp.weixin.qq.com/s/fjq4UyDMN9Z9lvNZ7aNLWABASNet:Boundary-AwareSalientObjectDetection论文学习_basnet:boundary-awaresalientobj
- 实现稳定的联合显著性检测和联合目标分割
umbrellazg
算法python
1TitleTowardStableCo-SaliencyDetectionandObjectCo-Segmentation(BoLi;LvTang;SenyunKuang;MofeiSong;ShouhongDing)【IEEETransactionsonImageProcessing2022】2ConclusionThispaperpresentanovelmodelforsimultaneo
- 2024年显著性检测论文及代码汇总(1)
学不动了躺叭
深度学习目标检测计算机视觉
ACMMMDistortion-awareTransformerin360°SalientObjectDetectioncodeAbstacrt:现有的方法无法处理二维等矩投影引起的畸变。本文提出了一个基于Transformer的模型,即DATFormer。首先,引入两个畸变自适应模块。其一是畸变映射模块,预处理全局畸变特征;其二是畸变自适应注意力块,减少多尺度特征的局部畸变。然后,为利用360°
- 静态背景下运动目标检测 matlab_干货 | 视频显著性目标检测(文末附有完整源码)...
weixin_39747049
静态背景下运动目标检测matlab
显著性检测近年来引起了广泛的研究兴趣。这种日益流行的原因在于在各种视觉任务(如图像分割、目标检测、视频摘要和压缩等)中有效地使用了这些模型。显著性模型大致可分为两类:人眼注视预测和显著目标检测。根据输入类型,可进一步分为静态显著性模型和动态显著性模型。背景将CNN应用于视频显著性的第一个问题是缺乏足够大、标记密集的视频训练数据。据我所知,CNN在计算机视觉方面的成功在很大程度上归功于大规模标注图像
- 四元傅里叶显著性图-四元数-Matlab编程
zxchz
四元数四元傅里叶变换Matlab
3.基于四元傅里叶变换的显著性检测(Spatio-temporalSaliencyDetectionUsingPhaseSpectrumofQuaternionFourierTransform)定义t时刻的输入图像F(t)(t=1,2,...,T,T表示输入视频的总帧数),r(t)、g(t)、b(t)分别表示F(t)的红、绿、蓝三通道,则其独立的颜色通道R(红)G(绿)B(蓝)Y(黄)分别定义为:
- 图像分割实战-系列教程11:U2NET显著性检测实战3
机器学习杨卓越
图像分割实战计算机视觉人工智能语义分割图像分割unet
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传U2NET显著性检测实战1U2NET显著性检测实战2U2NET显著性检测实战36、上采样操作与REBNCONVdef_upsample_like(src,tar):src=F.upsample(src,size=tar.shape[2:],mode='bilinear')
- 图像分割实战-系列教程10:U2NET显著性检测实战2
机器学习杨卓越
图像分割实战计算机视觉语义分割实例分割人工智能图像分割
图像分割实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传U2NET显著性检测实战1U2NET显著性检测实战2U2NET显著性检测实战35、残差Unet模块classRSU7(nn.Module):#UNet07DRES(nn.Module):def__init__(self,in_ch=3,mid_ch=12,out_ch=3
- 显著性检测算法学习阶段论文总结(1)
SH-ZZB
图像处理算法值得参考的显著性算法
因为本人研究方向是显著性检测,也就看了不少的显著性方面的文献。这篇博客是我对之前所看论文中一些较为经典,具有较大参考价值的论文的一个集中整理,也算是对自己学习过程的一个总结。1.GlobalContrastbasedSalientRegionDetection,Ming-mingCheng(CVPR2011)程明明的这篇基于全局颜色对比的显著性检测的论文我在上篇博客中详细介绍过,文中主要阐述了两种
- python opencv 显著图转热力图并叠加到原始图
Dr. DW
计算机视觉opencvcv深度学习图像识别
pythonopencv显著图转热力图并叠加到原始图图像分割、显著性检测通常会生成二值图或者灰度图像(mask),为了直观展示分割检测效果,通常最直接的方法就是将生成的mask基于一定透明度叠加到原始图像。本文通过pythonopencv来实现显著图转热力图并叠加到原始图,具体操作如下:1.读入分割图片和原始图片importcv2importnumpyasnpgray_img=cv2.imread
- 卷积神经网络(CNN)详解与代码实现
从0到1透视卷积神经网络的原理和应用
cnn深度学习人工智能
1.应用场景卷积神经网络的应用不可谓不广泛,主要有两大类,数据预测和图片处理。数据预测自然不需要多说,图片处理主要包含有图像分类,检测,识别,以及分割方面的应用。图像分类:场景分类,目标分类图像检测:显著性检测,物体检测,语义检测等等图像识别:人脸识别,字符识别,车牌识别,行为识别,步态识别等等图像分割:前景分割,语义分割2.卷积神经网络结构卷积神经网络主要是由输入层、卷积层、激活函数、池化层、全
- 计算机视觉
给点.
计算机视觉人工智能
目录一、图像处理maindenoise二、Harris角点检测三、Hough变换直线检测四、直方图显著性检测五、人脸识别六、kmeansimport函数kmeanstext七、神经网络常用函数:imread----------读取图像imshow---------显示图像rgb2hsv---------RGB转HSVhsv2rgb---------HSV转RGBimhist-----------显
- 2023年显著性检测论文及代码汇总(4)
看到我请叫我去学java吖
计算机视觉人工智能深度学习机器学习
ACMMMPartitionedSaliencyRankingwithDensePyramidTransformerscodeAbstacrt:显著性排序,其重点是评估实例级别的显著性程度。本文提出分区排序范式,该范式将无序的显著性实例分区,然后根据分区之间的相关性对其进行排序。分区排序范式减轻了排序的模糊性,提高了显著性排序模型的性能。除此之外,本文引入密集金字塔Transformer,实现全局
- 2018 VALSE 视觉盛宴-总结笔记
墨三
PixelLevelImageUnderstandingQuestion:1getrideofuserannotationprocess;2learnfromweb.category-agnosticcues:1显著性检测;2边缘检测;3over-segmentation,无语义标签,类似超像素,将图像分成多个区域,区域数目不固定。(关于Deepembeddinglearning《DeepEmbe
- 【CV计算机视觉深度学习】图像分类、多目标追踪、目标检测、旋转框检测、显著性检测、姿态估计、图像超分辨等等!精度评估指标解读大全(包括含义、计算、源码等,超详细~)
weixin_46031746
ML计算机视觉深度学习人工智能python目标跟踪目标检测机器学习
文章目录CV模型们的量化评估指标图像分类/ImageClassificationTop-1和Top-5多目标追踪/Multi-trackMOT精度指标的特性MOTAMOTPIDF1MT&ML&IDs举例说明目标追踪OPE:PrecisionPlot&SuccessPlotPrecisionPlotSuccessPlot鲁棒性评估TemporalRobustnessEvaluationSpatial
- 图像显著性目标检测
天马行空工作坊
图像显著性检测图像处理目标检测
一、概述1、定义图像显著性检测(SaliencyDetection,SD),指通过智能算法模拟人的视觉系统特点,预测人类的视觉凝视点和眼动,提取图像中的显著区域(即人类感兴趣的区域),可以广泛用于目标识别、图像编辑以及图像检索等领域,是计算机视觉领域关键的图像分析技术。示例如图所示,左图为原图,右图为经过显著性检测算法的结果图2、方法分类显著性目标检测主要可以分为两个阶段,分别是传统尺度空间手工特
- U2NET目标显著性检测,抠图去背景效果倍儿棒
fahaihappy
计算机视觉人工智能深度学习图像识别3d
点击上方“AI搞事情”关注我们❝论文:U^2-Net:GoingDeeperwithNestedU-StructureforSalientObjectDetectionGIT:https://github.com/NathanUA/U-2-Net❞U2Net用于显著目标检测(SalientObjectDetection,SOD),目的是分割出图像中最具吸引力的目标。不同于图像识别,SOD更注重局部
- 论文阅读——Pyramid Grafting Network for One-Stage High Resolution Saliency Detection
醋酸洋红就是我
论文阅读
目录基本信息标题目前存在的问题改进网络结构CMGM模块解答为什么要用这两个编码器进行编码另一个写的好的参考基本信息期刊CVPR年份2022论文地址https://arxiv.org/pdf/2204.05041.pdf代码地址https://github.com/iCVTEAM/PGNet标题金字塔嫁接网络的一级高分辨率显著性检测目前存在的问题cosod用于低分辨率图片下表现良好,高分辨率下(10
- 2023年显著性检测论文及代码汇总
看到我请叫我去学java吖
计算机视觉人工智能深度学习
AAAILeNo:AdversarialRobustSalientObjectDetectionNetworkswithLearnableNoiseAbstacrt:目前很少有SOD模型对人类视觉注意力难以察觉的对抗性攻击具有鲁棒性。先前的鲁棒显著性ROSA对预分割的超像素进行重组,通过密集连接的条件随机场CRF对粗糙的显著性图进行细化。与先前工作中依赖预处理和后处理的ROSA不同,本文提出一种轻
- 2023年显著性检测论文及代码汇总(2)
看到我请叫我去学java吖
目标检测计算机视觉机器学习
ACMMMRecurrentMulti-scaleTransformerforHigh-ResolutionSalientObjectDetectioncodeAbstacrt:现有的HRSOD方法没有足够大规模的数据集用于训练和评估,且会产生不完整的目标区域和不规则的目标边界。本文提出了一个新的HRS10K数据集,包含10500个2K-8K分辨率的高质量标注图像。同时,本文提出一个新的循环多尺度
- 2023年显著性检测论文及代码汇总(3)
看到我请叫我去学java吖
计算机视觉人工智能机器学习
ACMMMPoint-awareInteractionandCNN-inducedRefinementNetworkforRGB-DSalientObjectDetectioncodeAbstacrt:近年来,CNN在特征提取和跨模态交互中得到了充分的利用,但在自模态和跨模态的全局远程依赖关系建模方面仍存在不足。因此,本文引入了CNN辅助的Transformer架构,并提出了点感知交互和CNN诱导
- 使用显著性检测的可见光和红外图像的两尺度图像融合(Matlab代码实现)
长安程序猿
matlab计算机视觉人工智能
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述2运行结果3参考文献4Matlab代码及文献1概述文献:军事、导航和隐藏武器探测需要不同的成像模式,如可见光和红外光,以监测目标场景。这些方式提供了补充信息。为了更好地感知态势,必须将这些图像的补充信息集成到单个图像中。图像融合是将互补的源信息集成到合成图像中的
- 显著性检测数据集—学习笔记
studyeboy
显著性检测数据集
文章目录DUT-OMRONDUTSHKU-ISECSSD/CSSDSODPASCAL-S参考资料DUT-OMRON数据集包含5168张图像,最大边长为400像素,数据集中具有一个或多个显著对象和相对复杂的背景,具有眼睛固定、边界框和像素方面的大规模真实标注的数据集。论文:C.Yang,L.Zhang,H.Lu,X.Ruan,andM.-H.Yang,"Saliencydetectionviagra
- 第六章:Learning to Detect Salient Objects with Image-level Supervision——学习使用图像级监督来检测显著对象
Joney Feng
学习深度学习机器学习人工智能原型模式transformer
0.摘要深度神经网络(DNN)显著改进了显著目标检测的最新技术。然而,训练DNN需要昂贵的像素级注释。在本文中,我们利用图像级标签提供的重要线索来开发一种仅使用图像级标签进行显著性检测的弱监督学习方法。为了应对这一具有挑战性的任务,我们引入了前景推理网络(FIN)。在我们的训练方法的第一阶段,FIN与全卷积网络(FCN)一起进行图像级标签预测的联合训练。我们提出了全局平滑池化层,使得FCN能够为相
- Transformer网络学习记录——基于空间约束自注意力和Transformer的RGB-D显著性检测方法研究
fenghx258
深度学习transformer学习
基于图半监督学习和图卷积的目标分割与跟踪算法研究(wanfangdata.com.cn)只能说看不懂,记录是为了有耐心慢消化原文:网络整体为通用的编码器-解码器架构,总体上由骨干编码器、交互编码器、RGB解码器、深度解码器组成。具体来说,采用ResNet50作为骨干网络。给定一对RGB模态和Depth模态的输入图像,分别得到不同尺度的特征。为了减少参数和提高网络的性能,采用1×1卷积对降维到64。
- 显著性检测saliency detection代码实现
FrenchOldDriver
图像处理深度学习算法pythonnumpy深度学习
数学原理不具体展开直接上代码importcv2importmatplotlib.pyplotaspltsaliency=cv2.saliency.StaticSaliencyFineGrained_create()(_,sm)=saliency.computeSaliency(img)plt.imshow(sm,cmap=plt.cm.hot)就可以实现如下效果的变换也可以利用预训练模型生成mod
- 图像分割(上)
姜茶无糖
显著性检测显著性物体分割:最能引起人的视觉注意的物体区域注视点预测:通过对眼动的预测和探究探索人类视觉注意机制俩种策略的视觉注意机制:自底而上基于数据驱动的注意机制:从数据出发,与周边有较强对比度或差异,颜色,亮度,边缘等特征自上而下基于任务驱动的目标注意机制:从认知因素出发,如知识,语气,兴趣等DNN模型:由VGG网络修改而成DNN模型物体分割前景背景分割前景一般包含物体,需要交互提供初始标记G
- 【视频显著性检测】Video Salient Object Detection via Fully Convolutional Networks【论文笔记】
千草幽幽
SVideoSaliency
论文链接这篇论文非常有意思,不仅仅在于显著性,而在于数据集的生成。本文主要内容:一、提出使用神经网络做动态视觉显著性检测二、提出一种人工合成视频数据的方法。★★★★★三、在数据集上state-of-the-art,且速度更快。网络结构网络结构如图,输入单张图片经过全卷积网络输出得到静态显著性检测图,然后与下一帧的帧对结合,输入动态的全卷积网络得到最终的显著性检测图。网络结构非常清晰。视频数据的合成
- java责任链模式
3213213333332132
java责任链模式村民告县长
责任链模式,通常就是一个请求从最低级开始往上层层的请求,当在某一层满足条件时,请求将被处理,当请求到最高层仍未满足时,则请求不会被处理。
就是一个请求在这个链条的责任范围内,会被相应的处理,如果超出链条的责任范围外,请求不会被相应的处理。
下面代码模拟这样的效果:
创建一个政府抽象类,方便所有的具体政府部门继承它。
package 责任链模式;
/**
*
- linux、mysql、nginx、tomcat 性能参数优化
ronin47
一、linux 系统内核参数
/etc/sysctl.conf文件常用参数 net.core.netdev_max_backlog = 32768 #允许送到队列的数据包的最大数目
net.core.rmem_max = 8388608 #SOCKET读缓存区大小
net.core.wmem_max = 8388608 #SOCKET写缓存区大
- php命令行界面
dcj3sjt126com
PHPcli
常用选项
php -v
php -i PHP安装的有关信息
php -h 访问帮助文件
php -m 列出编译到当前PHP安装的所有模块
执行一段代码
php -r 'echo "hello, world!";'
php -r 'echo "Hello, World!\n";'
php -r '$ts = filemtime("
- Filter&Session
171815164
session
Filter
HttpServletRequest requ = (HttpServletRequest) req;
HttpSession session = requ.getSession();
if (session.getAttribute("admin") == null) {
PrintWriter out = res.ge
- 连接池与Spring,Hibernate结合
g21121
Hibernate
前几篇关于Java连接池的介绍都是基于Java应用的,而我们常用的场景是与Spring和ORM框架结合,下面就利用实例学习一下这方面的配置。
1.下载相关内容: &nb
- [简单]mybatis判断数字类型
53873039oycg
mybatis
昨天同事反馈mybatis保存不了int类型的属性,一直报错,错误信息如下:
Caused by: java.lang.NumberFormatException: For input string: "null"
at sun.mis
- 项目启动时或者启动后ava.lang.OutOfMemoryError: PermGen space
程序员是怎么炼成的
eclipsejvmtomcatcatalina.sheclipse.ini
在启动比较大的项目时,因为存在大量的jsp页面,所以在编译的时候会生成很多的.class文件,.class文件是都会被加载到jvm的方法区中,如果要加载的class文件很多,就会出现方法区溢出异常 java.lang.OutOfMemoryError: PermGen space.
解决办法是点击eclipse里的tomcat,在
- 我的crm小结
aijuans
crm
各种原因吧,crm今天才完了。主要是接触了几个新技术:
Struts2、poi、ibatis这几个都是以前的项目中用过的。
Jsf、tapestry是这次新接触的,都是界面层的框架,用起来也不难。思路和struts不太一样,传说比较简单方便。不过个人感觉还是struts用着顺手啊,当然springmvc也很顺手,不知道是因为习惯还是什么。jsf和tapestry应用的时候需要知道他们的标签、主
- spring里配置使用hibernate的二级缓存几步
antonyup_2006
javaspringHibernatexmlcache
.在spring的配置文件中 applicationContent.xml,hibernate部分加入
xml 代码
<prop key="hibernate.cache.provider_class">org.hibernate.cache.EhCacheProvider</prop>
<prop key="hi
- JAVA基础面试题
百合不是茶
抽象实现接口String类接口继承抽象类继承实体类自定义异常
/* * 栈(stack):主要保存基本类型(或者叫内置类型)(char、byte、short、 *int、long、 float、double、boolean)和对象的引用,数据可以共享,速度仅次于 * 寄存器(register),快于堆。堆(heap):用于存储对象。 */ &
- 让sqlmap文件 "继承" 起来
bijian1013
javaibatissqlmap
多个项目中使用ibatis , 和数据库表对应的 sqlmap文件(增删改查等基本语句),dao, pojo 都是由工具自动生成的, 现在将这些自动生成的文件放在一个单独的工程中,其它项目工程中通过jar包来引用 ,并通过"继承"为基础的sqlmap文件,dao,pojo 添加新的方法来满足项
- 精通Oracle10编程SQL(13)开发触发器
bijian1013
oracle数据库plsql
/*
*开发触发器
*/
--得到日期是周几
select to_char(sysdate+4,'DY','nls_date_language=AMERICAN') from dual;
select to_char(sysdate,'DY','nls_date_language=AMERICAN') from dual;
--建立BEFORE语句触发器
CREATE O
- 【EhCache三】EhCache查询
bit1129
ehcache
本文介绍EhCache查询缓存中数据,EhCache提供了类似Hibernate的查询API,可以按照给定的条件进行查询。
要对EhCache进行查询,需要在ehcache.xml中设定要查询的属性
数据准备
@Before
public void setUp() {
//加载EhCache配置文件
Inpu
- CXF框架入门实例
白糖_
springWeb框架webserviceservlet
CXF是apache旗下的开源框架,由Celtix + XFire这两门经典的框架合成,是一套非常流行的web service框架。
它提供了JAX-WS的全面支持,并且可以根据实际项目的需要,采用代码优先(Code First)或者 WSDL 优先(WSDL First)来轻松地实现 Web Services 的发布和使用,同时它能与spring进行完美结合。
在apache cxf官网提供
- angular.equals
boyitech
AngularJSAngularJS APIAnguarJS 中文APIangular.equals
angular.equals
描述:
比较两个值或者两个对象是不是 相等。还支持值的类型,正则表达式和数组的比较。 两个值或对象被认为是 相等的前提条件是以下的情况至少能满足一项:
两个值或者对象能通过=== (恒等) 的比较
两个值或者对象是同样类型,并且他们的属性都能通过angular
- java-腾讯暑期实习生-输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A[0]*A[1]*...*A[i-1]*A[i+1]
bylijinnan
java
这道题的具体思路请参看 何海涛的微博:http://weibo.com/zhedahht
import java.math.BigInteger;
import java.util.Arrays;
public class CreateBFromATencent {
/**
* 题目:输入一个数组A[1,2,...n],求输入B,使得数组B中的第i个数字B[i]=A
- FastDFS 的安装和配置 修订版
Chen.H
linuxfastDFS分布式文件系统
FastDFS Home:http://code.google.com/p/fastdfs/
1. 安装
http://code.google.com/p/fastdfs/wiki/Setup http://hi.baidu.com/leolance/blog/item/3c273327978ae55f93580703.html
安装libevent (对libevent的版本要求为1.4.
- [强人工智能]拓扑扫描与自适应构造器
comsci
人工智能
当我们面对一个有限拓扑网络的时候,在对已知的拓扑结构进行分析之后,发现在连通点之后,还存在若干个子网络,且这些网络的结构是未知的,数据库中并未存在这些网络的拓扑结构数据....这个时候,我们该怎么办呢?
那么,现在我们必须设计新的模块和代码包来处理上面的问题
- oracle merge into的用法
daizj
oraclesqlmerget into
Oracle中merge into的使用
http://blog.csdn.net/yuzhic/article/details/1896878
http://blog.csdn.net/macle2010/article/details/5980965
该命令使用一条语句从一个或者多个数据源中完成对表的更新和插入数据. ORACLE 9i 中,使用此命令必须同时指定UPDATE 和INSE
- 不适合使用Hadoop的场景
datamachine
hadoop
转自:http://dev.yesky.com/296/35381296.shtml。
Hadoop通常被认定是能够帮助你解决所有问题的唯一方案。 当人们提到“大数据”或是“数据分析”等相关问题的时候,会听到脱口而出的回答:Hadoop! 实际上Hadoop被设计和建造出来,是用来解决一系列特定问题的。对某些问题来说,Hadoop至多算是一个不好的选择,对另一些问题来说,选择Ha
- YII findAll的用法
dcj3sjt126com
yii
看文档比较糊涂,其实挺简单的:
$predictions=Prediction::model()->findAll("uid=:uid",array(":uid"=>10));
第一个参数是选择条件:”uid=10″。其中:uid是一个占位符,在后面的array(“:uid”=>10)对齐进行了赋值;
更完善的查询需要
- vim 常用 NERDTree 快捷键
dcj3sjt126com
vim
下面给大家整理了一些vim NERDTree的常用快捷键了,这里几乎包括了所有的快捷键了,希望文章对各位会带来帮助。
切换工作台和目录
ctrl + w + h 光标 focus 左侧树形目录ctrl + w + l 光标 focus 右侧文件显示窗口ctrl + w + w 光标自动在左右侧窗口切换ctrl + w + r 移动当前窗口的布局位置
o 在已有窗口中打开文件、目录或书签,并跳
- Java把目录下的文件打印出来
蕃薯耀
列出目录下的文件文件夹下面的文件目录下的文件
Java把目录下的文件打印出来
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月11日 11:02:
- linux远程桌面----VNCServer与rdesktop
hanqunfeng
Desktop
windows远程桌面到linux,需要在linux上安装vncserver,并开启vnc服务,同时需要在windows下使用vnc-viewer访问Linux。vncserver同时支持linux远程桌面到linux。
linux远程桌面到windows,需要在linux上安装rdesktop,同时开启windows的远程桌面访问。
下面分别介绍,以windo
- guava中的join和split功能
jackyrong
java
guava库中,包含了很好的join和split的功能,例子如下:
1) 将LIST转换为使用字符串连接的字符串
List<String> names = Lists.newArrayList("John", "Jane", "Adam", "Tom");
- Web开发技术十年发展历程
lampcy
androidWeb浏览器html5
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- 架构师之mima-----------------mina的非NIO控制IOBuffer(说得比较好)
nannan408
buffer
1.前言。
如题。
2.代码。
IoService
IoService是一个接口,有两种实现:IoAcceptor和IoConnector;其中IoAcceptor是针对Server端的实现,IoConnector是针对Client端的实现;IoService的职责包括:
1、监听器管理
2、IoHandler
3、IoSession
- ORA-00054:resource busy and acquire with NOWAIT specified
Everyday都不同
oraclesessionLock
[Oracle]
今天对一个数据量很大的表进行操作时,出现如题所示的异常。此时表明数据库的事务处于“忙”的状态,而且被lock了,所以必须先关闭占用的session。
step1,查看被lock的session:
select t2.username, t2.sid, t2.serial#, t2.logon_time
from v$locked_obj
- javascript学习笔记
tntxia
JavaScript
javascript里面有6种基本类型的值:number、string、boolean、object、function和undefined。number:就是数字值,包括整数、小数、NaN、正负无穷。string:字符串类型、单双引号引起来的内容。boolean:true、false object:表示所有的javascript对象,不用多说function:我们熟悉的方法,也就是
- Java enum的用法详解
xieke90
enum枚举
Java中枚举实现的分析:
示例:
public static enum SEVERITY{
INFO,WARN,ERROR
}
enum很像特殊的class,实际上enum声明定义的类型就是一个类。 而这些类都是类库中Enum类的子类 (java.l