Awesome Semantic Segmentation

Awesome Semantic Segmentation

Networks by architecture

Semantic segmentation

  • U-Net [https://arxiv.org/pdf/1505.04597.pdf]
    • https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/ [Caffe + Matlab]
    • https://github.com/jocicmarko/ultrasound-nerve-segmentation [Keras]
    • https://github.com/EdwardTyantov/ultrasound-nerve-segmentation [Keras]
    • https://github.com/ZFTurbo/ZF_UNET_224_Pretrained_Model [Keras]
    • https://github.com/yihui-he/u-net [Keras]
    • https://github.com/jakeret/tf_unet [Tensorflow]
    • https://github.com/DLTK/DLTK/blob/master/examples/Toy_segmentation/simple_dltk_unet.ipynb [Tensorflow]
    • https://github.com/divamgupta/image-segmentation-keras [Keras]
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
  • SegNet [https://arxiv.org/pdf/1511.00561.pdf]
    • https://github.com/alexgkendall/caffe-segnet [Caffe]
    • https://github.com/developmentseed/caffe/tree/segnet-multi-gpu [Caffe]
    • https://github.com/preddy5/segnet [Keras]
    • https://github.com/imlab-uiip/keras-segnet [Keras]
    • https://github.com/andreaazzini/segnet [Tensorflow]
    • https://github.com/fedor-chervinskii/segnet-torch [Torch]
    • https://github.com/0bserver07/Keras-SegNet-Basic [Keras]
    • https://github.com/tkuanlun350/Tensorflow-SegNet [Tensorflow]
    • https://github.com/divamgupta/image-segmentation-keras [Keras]
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
    • https://github.com/chainer/chainercv/tree/master/examples/segnet [Chainer]
  • DeepLab [https://arxiv.org/pdf/1606.00915.pdf]
    • https://bitbucket.org/deeplab/deeplab-public/ [Caffe]
    • https://github.com/cdmh/deeplab-public [Caffe]
    • https://bitbucket.org/aquariusjay/deeplab-public-ver2 [Caffe]
    • https://github.com/TheLegendAli/DeepLab-Context [Caffe]
    • https://github.com/msracver/Deformable-ConvNets/tree/master/deeplab [MXNet]
    • https://github.com/DrSleep/tensorflow-deeplab-resnet [Tensorflow]
    • https://github.com/muyang0320/tensorflow-deeplab-resnet-crf [TensorFlow]
  • FCN [https://arxiv.org/pdf/1605.06211.pdf]
    • https://github.com/vlfeat/matconvnet-fcn [MatConvNet]
    • https://github.com/shelhamer/fcn.berkeleyvision.org [Caffe]
    • https://github.com/MarvinTeichmann/tensorflow-fcn [Tensorflow]
    • https://github.com/aurora95/Keras-FCN [Keras]
    • https://github.com/mzaradzki/neuralnets/tree/master/vgg_segmentation_keras [Keras]
    • https://github.com/k3nt0w/FCN_via_keras [Keras]
    • https://github.com/shekkizh/FCN.tensorflow [Tensorflow]
    • https://github.com/seewalker/tf-pixelwise [Tensorflow]
    • https://github.com/divamgupta/image-segmentation-keras [Keras]
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
    • https://github.com/wkentaro/pytorch-fcn [PyTorch]
    • https://github.com/wkentaro/fcn [Chainer]
    • https://github.com/apache/incubator-mxnet/tree/master/example/fcn-xs [MxNet]
    • https://github.com/muyang0320/tf-fcn [Tensorflow]
    • https://github.com/ycszen/pytorch-seg [PyTorch]
  • ENet [https://arxiv.org/pdf/1606.02147.pdf]
    • https://github.com/TimoSaemann/ENet [Caffe]
    • https://github.com/e-lab/ENet-training [Torch]
    • https://github.com/PavlosMelissinos/enet-keras [Keras]
  • LinkNet [https://arxiv.org/pdf/1707.03718.pdf]
    • https://github.com/e-lab/LinkNet [Torch]
  • DenseNet [https://arxiv.org/pdf/1608.06993.pdf]
    • https://github.com/flyyufelix/DenseNet-Keras [Keras]
  • Tiramisu [https://arxiv.org/pdf/1611.09326.pdf]
    • https://github.com/0bserver07/One-Hundred-Layers-Tiramisu [Keras]
    • https://github.com/SimJeg/FC-DenseNet [Lasagne]
  • DilatedNet [https://arxiv.org/pdf/1511.07122.pdf]
    • https://github.com/nicolov/segmentation_keras [Keras]
  • PixelNet [https://arxiv.org/pdf/1609.06694.pdf]
    • https://github.com/aayushbansal/PixelNet [Caffe]
  • ICNet [https://arxiv.org/pdf/1704.08545.pdf]
    • https://github.com/hszhao/ICNet [Caffe]
  • ERFNet [http://www.robesafe.uah.es/personal/eduardo.romera/pdfs/Romera17iv.pdf]
    • https://github.com/Eromera/erfnet [Torch]
  • RefineNet [https://arxiv.org/pdf/1611.06612.pdf]
    • https://github.com/guosheng/refinenet [MatConvNet]
  • PSPNet [https://arxiv.org/pdf/1612.01105.pdf]
    • https://github.com/hszhao/PSPNet [Caffe]
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
    • https://github.com/mitmul/chainer-pspnet [Chainer]
    • https://github.com/Vladkryvoruchko/PSPNet-Keras-tensorflow [Keras/Tensorflow]
  • CRFasRNN [http://www.robots.ox.ac.uk/%7Eszheng/papers/CRFasRNN.pdf]
    • https://github.com/torrvision/crfasrnn [Caffe]
    • https://github.com/sadeepj/crfasrnn_keras [Keras]
  • Dilated convolution [https://arxiv.org/pdf/1511.07122.pdf]
    • https://github.com/fyu/dilation [Caffe]
    • https://github.com/fyu/drn#semantic-image-segmentataion [PyTorch]
    • https://github.com/hangzhaomit/semantic-segmentation-pytorch [PyTorch]
  • DeconvNet [https://arxiv.org/pdf/1505.04366.pdf]
    • http://cvlab.postech.ac.kr/research/deconvnet/ [Caffe]
    • https://github.com/HyeonwooNoh/DeconvNet [Caffe]
    • https://github.com/fabianbormann/Tensorflow-DeconvNet-Segmentation [Tensorflow]
  • FRRN [https://arxiv.org/pdf/1611.08323.pdf]
    • https://github.com/TobyPDE/FRRN [Lasagne]
  • GCN [https://arxiv.org/pdf/1703.02719.pdf]
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
    • https://github.com/ycszen/pytorch-seg [PyTorch]
  • DUC, HDC [https://arxiv.org/pdf/1702.08502.pdf]
    • https://github.com/ZijunDeng/pytorch-semantic-segmentation [PyTorch]
    • https://github.com/ycszen/pytorch-seg [PyTorch]

Instance aware segmentation

  • FCIS [https://arxiv.org/pdf/1611.07709.pdf]
    • https://github.com/msracver/FCIS [MxNet]
  • MNC [https://arxiv.org/pdf/1512.04412.pdf]
    • https://github.com/daijifeng001/MNC [Caffe]
  • DeepMask [https://arxiv.org/pdf/1506.06204.pdf]
    • https://github.com/facebookresearch/deepmask [Torch]
  • SharpMask [https://arxiv.org/pdf/1603.08695.pdf]
    • https://github.com/facebookresearch/deepmask [Torch]
  • Mask-RCNN [https://arxiv.org/pdf/1703.06870.pdf]
    • https://github.com/CharlesShang/FastMaskRCNN [Tensorflow]
    • https://github.com/jasjeetIM/Mask-RCNN [Caffe]

Datasets:

  • Stanford Background Dataset
  • Sift Flow Dataset
  • Barcelona Dataset
  • Microsoft COCO dataset
  • MSRC Dataset
  • LITS Liver Tumor Segmentation Dataset
  • KITTI
  • Stanford background dataset
  • Data from Games dataset
  • Human parsing dataset
  • Silenko person database
  • Mapillary Vistas Dataset
  • Microsoft AirSim
  • MIT Scene Parsing Benchmark

Results:

  • MSRC-21
  • Cityscapes
  • VOC2012

Networks by framework (Older list)

  • Keras

    • https://github.com/gakarak/FCN_MSCOCO_Food_Segmentation
    • https://github.com/abbypa/NNProject_DeepMask
  • TensorFlow

    • https://github.com/warmspringwinds/tf-image-segmentation
  • Caffe

    • https://github.com/xiaolonw/nips14_loc_seg_testonly
    • https://github.com/naibaf7/caffe_neural_tool
  • torch

    • https://github.com/erogol/seg-torch
    • https://github.com/phillipi/pix2pix
  • MXNet

    • https://github.com/itijyou/ademxapp

Papers and Code (Older list)

  • Simultaneous detection and segmentation

    • http://www.eecs.berkeley.edu/Research/Projects/CS/vision/shape/sds/
    • https://github.com/bharath272/sds_eccv2014
  • Decoupled Deep Neural Network for Semi-supervised Semantic Segmentation

    • https://github.com/HyeonwooNoh/DecoupledNet
  • Learning to Propose Objects

    • http://vladlen.info/publications/learning-to-propose-objects/
    • https://github.com/philkr/lpo
  • Nonparametric Scene Parsing via Label Transfer

    • http://people.csail.mit.edu/celiu/LabelTransfer/code.html
  • Other

    • https://github.com/cvjena/cn24
    • http://lmb.informatik.uni-freiburg.de/resources/software.php
    • https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation
    • https://github.com/voidrank/FastMask
    • http://jamie.shotton.org/work/code.html
    • https://github.com/amueller/textonboost

Graphical Models (CRF, MRF)

  • https://github.com/cvlab-epfl/densecrf
  • http://vladlen.info/publications/efficient-inference-in-fully-connected-crfs-with-gaussian-edge-potentials/
  • http://www.philkr.net/home/densecrf
  • http://graphics.stanford.edu/projects/densecrf/
  • https://github.com/amiltonwong/segmentation/blob/master/segmentation.ipynb
  • https://github.com/jliemansifry/super-simple-semantic-segmentation
  • http://users.cecs.anu.edu.au/~jdomke/JGMT/
  • https://www.quora.com/How-can-one-train-and-test-conditional-random-field-CRF-in-Python-on-our-own-training-testing-dataset
  • https://github.com/tpeng/python-crfsuite
  • https://github.com/chokkan/crfsuite
  • https://sites.google.com/site/zeppethefake/semantic-segmentation-crf-baseline
  • https://github.com/lucasb-eyer/pydensecrf

RNN

  • https://github.com/fvisin/reseg
  • https://github.com/bernard24/RIS
  • https://github.com/martinkersner/train-CRF-RNN
  • https://github.com/NP-coder/CLPS1520Project [Tensorflow]
  • https://github.com/renmengye/rec-attend-public [Tensorflow]

Medical image segmentation:

  • DIGITS

    • https://github.com/NVIDIA/DIGITS/tree/master/examples/medical-imaging
  • U-Net: Convolutional Networks for Biomedical Image Segmentation

    • http://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/
    • https://github.com/dmlc/mxnet/issues/1514
    • https://github.com/orobix/retina-unet
    • https://github.com/fvisin/reseg
    • https://github.com/yulequan/melanoma-recognition
    • http://www.andrewjanowczyk.com/use-case-1-nuclei-segmentation/
    • https://github.com/junyanz/MCILBoost
    • https://github.com/imlab-uiip/lung-segmentation-2d
    • https://github.com/scottykwok/cervix-roi-segmentation-by-unet
    • https://github.com/WeidiXie/cell_counting_v2
    • https://github.com/yandexdataschool/YSDA_deeplearning17/blob/master/Seminar6/Seminar%206%20-%20segmentation.ipynb
  • Cascaded-FCN

    • https://github.com/IBBM/Cascaded-FCN
  • Keras

    • https://github.com/jocicmarko/ultrasound-nerve-segmentation
    • https://github.com/EdwardTyantov/ultrasound-nerve-segmentation
    • https://github.com/intact-project/ild-cnn
    • https://github.com/scottykwok/cervix-roi-segmentation-by-unet
  • Using Convolutional Neural Networks (CNN) for Semantic Segmentation of Breast Cancer Lesions (BRCA)

    • https://github.com/ecobost/cnn4brca
  • Papers:

    • https://www2.warwick.ac.uk/fac/sci/dcs/people/research/csrkbb/tmi2016_ks.pdf
    • Sliding window approach
      • http://people.idsia.ch/~juergen/nips2012.pdf
    • https://github.com/albarqouni/Deep-Learning-for-Medical-Applications#segmentation
  • Data:

    • https://luna16.grand-challenge.org/
    • https://camelyon16.grand-challenge.org/

Satellite images segmentation

  • https://github.com/mshivaprakash/sat-seg-thesis
  • https://github.com/KGPML/Hyperspectral
  • https://github.com/lopuhin/kaggle-dstl
  • https://github.com/mitmul/ssai
  • https://github.com/mitmul/ssai-cnn
  • https://github.com/azavea/raster-vision
  • https://github.com/nshaud/DeepNetsForEO
  • Data:
    • https://github.com/RSIA-LIESMARS-WHU/RSOD-Dataset-

Video segmentation

  • https://github.com/shelhamer/clockwork-fcn

Autonomous driving

  • https://github.com/MarvinTeichmann/MultiNet
  • https://github.com/MarvinTeichmann/KittiSeg
  • https://github.com/vxy10/p5_VehicleDetection_Unet [Keras]

Annotation Tools:

  • https://github.com/AKSHAYUBHAT/ImageSegmentation
  • https://github.com/kyamagu/js-segment-annotator
  • https://github.com/CSAILVision/LabelMeAnnotationTool
  • https://github.com/seanbell/opensurfaces-segmentation-ui
  • https://github.com/lzx1413/labelImgPlus
  • https://github.com/wkentaro/labelme

To look at

  • https://github.com/fchollet/keras/issues/6538
  • https://github.com/warmspringwinds/tensorflow_notes
  • https://github.com/meetshah1995/pytorch-semseg
  • https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation
  • https://github.com/desimone/segmentation-models
  • https://github.com/mrgloom/Semantic-Segmentation-Evaluation/issues/1
  • https://github.com/nightrome/really-awesome-semantic-segmentation
  • https://github.com/kjw0612/awesome-deep-vision#semantic-segmentation
  • http://www.it-caesar.com/list-of-contemporary-semantic-segmentation-datasets/
  • https://github.com/MichaelXin/Awesome-Caffe#23-image-segmentation

Blog posts, other:

  • https://handong1587.github.io/deep_learning/2015/10/09/segmentation.html
  • http://www.andrewjanowczyk.com/efficient-pixel-wise-deep-learning-on-large-images/
  • https://devblogs.nvidia.com/parallelforall/image-segmentation-using-digits-5/
  • https://github.com/NVIDIA/DIGITS/tree/master/examples/binary-segmentation
  • https://github.com/NVIDIA/DIGITS/tree/master/examples/semantic-segmentation

你可能感兴趣的:(显著性检测)