堆通常是一个可以被看做一棵树的数组对象。堆总是满足下列性质:
常见的堆有二叉堆、斐波那契堆等。
堆是线性数据结构,相当于一维数组,有唯一后继。
堆的定义如下:n个元素的序列{k1,k2,ki,…,kn}当且仅当满足下关系时,称之为堆。
(ki<= k2i,ki <= k2i+1)或者(ki >= k2i,ki >= k2i+1), (i = 1,2,3,4…n/2)
若将和此次序列对应的一维数组(即以一维数组作此序列的存储结构)看成是一个完全二叉树,则堆的含义表明,完全二叉树中所有非终端结点的值均不大于(或不小于)其左、右孩子结点的值。由此,若序列{k1,k2,…,kn}是堆,则堆顶元素(或完全二叉树的根)必为序列中n个元素的最小值(或最大值)。
堆支持以下的基本:
参考:https://www.cnblogs.com/CarpenterLee/p/5488070.html
Java中PriorityQueue通过二叉小顶堆实现,可以用一棵完全二叉树表示。优先队列的作用是能保证每次取出的元素都是队列中权值最小的。这里牵涉到了大小关系,元素大小的评判可以通过元素本身的自然顺序(natural ordering),也可以通过构造时传入的比较器(Comparator,类似于C++的仿函数)。
Java中PriorityQueue实现了Queue接口,不允许放入null元素;其通过堆实现,具体说是通过完全二叉树(complete binary tree)实现的小顶堆(任意一个非叶子节点的权值,都不大于其左右子节点的权值),也就意味着可以通过数组来作为PriorityQueue的底层实现。其中,父节点和子节点的编号是有联系的,更确切的说父子节点的编号之间有如下关系:
leftNo = parentNo2+1
rightNo = parentNo2+2
parentNo = (nodeNo-1)/2
通过上述三个公式,可以轻易计算出某个节点的父节点以及子节点的下标。这也就是为什么可以直接用数组来存储堆的原因。
PriorityQueue的peek()和element操作是常数时间,add(), offer(), 无参数的remove()以及poll()方法的时间复杂度都是log(N)。
Find the kth largest element in an unsorted array. Note that it is the kth largest element in the sorted order, not the kth distinct element.
Example 1:
Input: [3,2,1,5,6,4] and k = 2
Output: 5
Example 2:
Input: [3,2,3,1,2,4,5,5,6] and k = 4
Output: 4
public class Solution {
public int findKthLargest(int[] nums, int k) {
PriorityQueue<Integer> largeK = new PriorityQueue<Integer>(k + 1);
for(int el : nums) {
largeK.add(el);
if (largeK.size() > k) {
largeK.poll();
}
}
return largeK.poll();
}
}