- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- 数据写入因为汉字引发的异常
qq_40841339
sparkhadoophivehivehadoop数据仓库
spark数据写hive表,发生查询分区异常问题异常:251071241926.49ERRORHive:MelaException(message.Exceptionthrownwhenexeculingquey.SELECTDISTINCT‘orgapache.hadop.hivemelastore.modelMpartionAs"NUCLEUSTYPE,AONCREATETIME,AO.LAS
- 语言合成模型Spark-TTS-0.5B学习笔记
tutgxuzyj
spark学习笔记
语言合成模型Spark-TTS-0.5B学习笔记语言合成是通过计算机技术将文字信息转换为自然流畅的语音输出,模拟人类语音。一、下载Spark-TTS-0.5B项目下载链接:https://github.com/SparkAudio/Spark-TTS.git注:需要科学网络。进入Spark-TTS文件夹,启动命令行窗口。创建Conda环境:condacreate-nsparktts-ypython
- Spark-TTS 使用
时间自由
AI人工智能
1.开发背景上一章节使用了MegaTTS3实现文本转语音,但是后面才发现只能使用官方的语言包,没看到克隆功能,所以重新找了一个可以克隆语音的开源模型。2.开发需求在Ubuntu下实现Spark-TTS的部署,实现官方语音克隆,根据自定义文本输出语音。3.开发环境Ubuntu20.04+Conda+Spark-TTS+RTX5060TI4.实现步骤4.1安装环境#创建环境python版本建议3.10
- Spark 的监控和性能调优高度依赖其内置的工具:【 Spark Web UI 和 Spark History Server】
csdn_tom_168
大数据spark大数据核心监控性能调优工具
Spark的监控和性能调优高度依赖其内置的SparkWebUI和SparkHistoryServer。它们是诊断作业性能瓶颈、资源利用率、错误原因和优化机会的最重要工具。一、SparkWebUI(DriverWebUI)当一个Spark应用程序(SparkContext)运行时,Driver进程会启动一个Web服务器,默认端口是4040(如果4040被占用,则尝试4041,4042等)。这是实时监
- 黑猴子的家:Spark RDD 编程进阶 之 广播变量
黑猴子的家
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,甚至是机器学习算法中的一个很大的特征向量,广播变量用起来都很顺手。传统方式下,Spark会自动把闭包中所有引用到的变量发送到工作节点上。虽然这很方便,但也很低效。原因有二:首先,默认的任务发射机制是专门为小任务进行优化的;其次,事实上你可能
- 开源项目ESP-SparkBot: ESP32-S3 大模型 AI 桌面机器人(复刻分享)
Qsm_lambda
机器人aiAI编程
一、前言ESP-SparkBot是官方大佬,乐鑫小铁匠开源在立创开源硬件平台的项目,此贴是用于分享与记录复刻过程。开源地址:(ESP-SparkBot-立创开源硬件平台(oshwhub.com))千人讨论Q群362367052二、项目简介ESP-SparkBot是⼀款基于ESP32-S3,集成语⾳交互、图像识别、遥控操作和多媒体功能于⼀体的智能设备。它不仅可以通过语⾳助⼿实现
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- SpringBoot与ApacheSpark、MyBatis实战整合
KENYCHEN奉孝
spring实站大全java开发语言mybatisspring
基于SpringBoot和ApacheSpark开发的实例以下是基于SpringBoot和ApacheSpark整合开发的实用示例分类及关键点,涵盖数据处理、机器学习、实时分析等场景。每个示例均提供核心思路和代码片段(Markdown格式)。数据处理与ETL示例1:CSV文件读取与处理SparkSessionspark=SparkSession.builder().appName("CSVProc
- INVALID_COLUMN_NAME _AS_PATH
sparksql异常[INVALID_COLUMN_NAME_AS_PATH]ThedatasourceHiveFileFormatcannotsavethecolumnmin(birth_date)becauseitsnamecontainssomecharactersthatarenotallowedinfilepaths.Piease,useanallastorenameidemosqlSE
- Hive/Spark小文件解决方案(企业级实战)–参数和SQL优化
陆水A
大数据hivehadoopsparkpython
重点是后面的参数优化一、小文件的定义在Hadoop的上下文中,小文件的定义是相对于Hadoop分布式文件系统(HDFS)的块(Block)大小而言的。HDFS是Hadoop生态系统中的核心组件之一,它设计用于存储和处理大规模数据集。在HDFS中,数据被分割成多个块,每个块的大小是固定的,这个大小在Hadoop的不同版本和配置中可能有所不同,但常见的默认块大小包括128MB、256MB等。基于这个背
- Spark核心--RDD介绍
陆水A
大数据spark大数据分布式
一、RDD的介绍rdd弹性分布式数据集是spark框架自己封装的数据类型,用来管理内存数据数据集:rdd数据的格式类似Python中[]。hive中的该结构[]叫数组rdd提供算子(方法)方便开发人员进行调用计算数据在pysaprk中本质是定义一个rdd类型用来管理和计算内存数据分布式:rdd可以时使用多台机器的内存资源完成计算弹性:可以通过分区将数据分成多份234,每份数据对应一个task线程处
- C++与Hive、Spark、libhdfs、ACID交互技巧
KENYCHEN奉孝
C++开发语言springC++hivespark
C++与Hive交互的实例以下是C++与Hive交互的实例代码片段,涵盖连接、查询、数据操作等常见场景。假设使用libhdfs或thrift接口实现,部分示例需要结合Hive环境配置。基础连接与查询示例1:通过Thrift连接HiveServer2#include#include#includeusingnamespaceapache::thrift;usingnamespaceapache::h
- 全面的Spark学习资料合集:从基础到高级应用
本文还有配套的精品资源,点击获取简介:Spark是一个受到数据科学界青睐的大数据处理框架,以其高效、易用和可扩展性著称。本资料合集包括了Spark的基础学习材料、实战案例分析和高级应用实践,内容覆盖从Scala编程语言基础到Spark核心功能使用,再到大数据领域的实际应用。适合不同层次的学习者深入学习Spark,无论是初学者还是有经验的开发者,都能从中找到有价值的学习资源,帮助理解和掌握Spark
- 一文带你理清Spark Core调优的方方面面
即将秃头的Java程序员
前言本文的注意事项观看本文前,可以先百度搜索一下Spark程序的十大开发原则看看哦文章虽然很长,可并不是什么枯燥乏味的内容,而且都是面试时的干货(我觉得)可以结合PC端的目录食用,可以直接跳转到你想要的那部分内容图非常的重要,是文章中最有价值的部分。如果不是很重要的图一般不会亲手画,特别是本文2.2.6的图非常重要此文会很大程度上借鉴美团的文章分享内容和Spark官方资料去进行说明,也会结合笔者自
- AI系统Spark原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统Spark原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Spark、大数据处理、分布式计算、机器学习、数据挖掘、实时流处理1.背景介绍1.1问题的由来在大数据时代,海量数据的高效处理和分析已成为各行各业的迫切需求。传统的数据处理方式难以应对数据量激增、数据类型多样化以及实时性要求高等挑战。为了解决这些问题,Ap
- Spark大数据处理讲课笔记4.8 Spark SQL典型案例
酒城译痴无心剑
#Spark基础学习笔记(1)spark笔记sql
文章目录零、本讲学习目标一、使用SparkSQL实现词频统计(一)提出任务(二)实现任务1、准备数据文件2、创建Maven项目3、修改源程序目录4、添加依赖和设置源程序目录5、创建日志属性文件6、创建HDFS配置文件7、创建词频统计单例对象8、启动程序,查看结果9、词频统计数据转化流程图二、使用SparkSQL计算总分与平均分(一)提出任务(二)完成任务1、准备数据文件2、新建Maven项目3、修
- 手撕Spark之WordCount RDD执行流程
啊Abu
Sparkspark
手撕Spark之WordCountRDD执行流程文章目录手撕Spark之WordCountRDD执行流程写在前面软件环境代码过程分析写在前面一个Spark程序在初始化的时候会构造DAGScheduler、TaskSchedulerImpl、MapOutTrackerMaster等对象,DAGScheduler主要负责生成DAG、启动Job、提交Stage等操作,TaskSchedulerImpl主
- 【大数据学习 | Spark-Core】RDD的概念与Spark任务的执行流程
Vez'nan的幸福生活
大数据sparkoraclesqljson
1.RDD的设计背景在实际应用中,存在许多迭代式计算,这些应用场景的共同之处是,不同计算阶段之间会重用中间结果,即一个阶段的输出结果会作为下一个阶段的输入。但是,目前的MapReduce框架都是把中间结果写入到HDFS中,带来了大量的数据复制、磁盘IO和序列化开销。显然,如果能将结果保存在内存当中,就可以大量减少IO。RDD就是为了满足这种需求而出现的,它提供了一个抽象的数据架构,我们不必担心底层
- 第84课:StreamingContext、DStream、Receiver深度剖析
chengnidi5193
StreamingContext、DStream、Receiver深度剖析编写人:姜伟、唐陈昊、龚湄燕本课分成四部分讲解,第一部分对StreamingContext功能及源码剖析;第二部分对DStream功能及源码剖析;第三部分对Receiver功能及源码剖析;最后一部分将StreamingContext、DStream、Receiver结合起来分析其流程。1、通过SparkStreaming对象
- Hbase BulkLoad用法
kikiki2
要导入大量数据,Hbase的BulkLoad是必不可少的,在导入历史数据的时候,我们一般会选择使用BulkLoad方式,我们还可以借助Spark的计算能力将数据快速地导入。使用方法导入依赖包compilegroup:'org.apache.spark',name:'spark-sql_2.11',version:'2.3.1.3.0.0.0-1634'compilegroup:'org.apach
- Python 大数据分析(二)
绝不原创的飞龙
默认分类默认分类
原文:annas-archive.org/md5/5058e6970bd2a8d818ecc1f7f8fef74a译者:飞龙协议:CCBY-NC-SA4.0第六章:第五章处理缺失值和相关性分析学习目标到本章结束时,你将能够:使用PySpark检测和处理数据中的缺失值描述变量之间的相关性计算PySpark中两个或多个变量之间的相关性使用PySpark创建相关矩阵在本章中,我们将使用Iris数据集处理
- DolphinScheduler 如何高效调度 AnalyticDB on Spark 作业?
DolphinScheduler社区
spark大数据分布式
DolphinScheduler是一个分布式易扩展的可视化DAG工作流任务调度开源系统,能高效地执行和管理大数据流程。用户可以在DolphinSchedulerWeb界面轻松创建、编辑和调度云原生数据仓库AnalyticDBMySQL版的Spark作业。前提条件AnalyticDBforMySQL集群的产品系列为企业版、基础版或湖仓版。AnalyticDBforMySQL集群中已创建Job型资源组
- 【Spark征服之路-3.7-Spark-SQL核心编程(六)】
qq_46394486
sparksqlajax
数据加载与保存:通用方式:SparkSQL提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL默认读取和保存的文件格式为parquet加载数据:spark.read.load是加载数据的通用方法。如果读取不同格式的数据,可以对不同的数据格式进行设定。spark.read.format("…")[.option("…")].
- 深入解析 Spark:关键问题与答案汇总
※尘
sqlhivespark
在大数据处理领域,Spark凭借其高效的计算能力和丰富的功能,成为了众多开发者和企业的首选框架。然而,在使用Spark的过程中,我们会遇到各种各样的问题,从性能优化到算子使用等。本文将围绕Spark的一些核心问题进行详细解答,帮助大家更好地理解和运用Spark。Spark性能优化策略Spark性能优化是提升作业执行效率的关键,主要可以从以下几个方面入手:首先,资源配置优化至关重要。合理设置Exec
- spark on yarn
不辉放弃
pyspark大数据开发
SparkonYARN是指将Spark应用程序运行在HadoopYARN集群上,借助YARN的资源管理和调度能力来管理Spark的计算资源。这种模式能充分利用现有Hadoop集群资源,简化集群管理,是企业中常用的Spark部署方式。核心角色•Spark应用:包含Driver进程和Executor进程。Driver负责任务调度、逻辑处理;Executor负责执行具体任务并存储数据。•YARN组件:◦
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo