- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- INVALID_COLUMN_NAME _AS_PATH
sparksql异常[INVALID_COLUMN_NAME_AS_PATH]ThedatasourceHiveFileFormatcannotsavethecolumnmin(birth_date)becauseitsnamecontainssomecharactersthatarenotallowedinfilepaths.Piease,useanallastorenameidemosqlSE
- Spark大数据处理讲课笔记4.8 Spark SQL典型案例
酒城译痴无心剑
#Spark基础学习笔记(1)spark笔记sql
文章目录零、本讲学习目标一、使用SparkSQL实现词频统计(一)提出任务(二)实现任务1、准备数据文件2、创建Maven项目3、修改源程序目录4、添加依赖和设置源程序目录5、创建日志属性文件6、创建HDFS配置文件7、创建词频统计单例对象8、启动程序,查看结果9、词频统计数据转化流程图二、使用SparkSQL计算总分与平均分(一)提出任务(二)完成任务1、准备数据文件2、新建Maven项目3、修
- 【Spark征服之路-3.7-Spark-SQL核心编程(六)】
qq_46394486
sparksqlajax
数据加载与保存:通用方式:SparkSQL提供了通用的保存数据和数据加载的方式。这里的通用指的是使用相同的API,根据不同的参数读取和保存不同格式的数据,SparkSQL默认读取和保存的文件格式为parquet加载数据:spark.read.load是加载数据的通用方法。如果读取不同格式的数据,可以对不同的数据格式进行设定。spark.read.format("…")[.option("…")].
- Spark从入门到熟悉(篇三)
小新学习屋
数据分析spark大数据分布式
本文介绍Spark的DataFrame、SparkSQL,并进行SparkSQL实战,加强对编程的理解,实现快速入手知识脉络包含如下7部分内容:RDD和DataFrame、SparkSQL的对比创建DataFrameDataFrame保存成文件DataFrame的API交互DataFrame的SQL交互SparkSQL实战参考资料RDD和DataFrame、SparkSQL的对比RDD对比Data
- 【SequoiaDB】4 巨杉数据库SequoiaDB整体架构
Alen_Liu_SZ
巨杉数据库SequoiaDB架构编目节点协调节点数据节点巨杉数据库
1整体架构SequoiaDB巨杉数据库作为分布式数据库,由数据库存储引擎与数据库实例两大模块组成。其中,数据库存储引擎模块是数据存储的核心,负责提供整个数据库的读写服务、数据的高可用与容灾、ACID与发你不是事务等全部核心数据服务能力。数据库实例模块则作为协议与语法的适配层,用户可根据需要创建包括MySQL、PostgreSQL与SparkSQL在内的结构化数据实例;支持JSON语法的MongoD
- Spark教程3:SparkSQL最全介绍
Cachel wood
大数据开发spark大数据分布式计算机网络AHP需求分析
文章目录SparkSQL最全介绍一、SparkSQL概述二、SparkSession:入口点三、DataFrame基础操作四、SQL查询五、SparkSQL函数六、与Hive集成七、数据源操作八、DataFrame与RDD互转九、高级特性十、性能优化十一、Catalyst优化器十二、SparkSQL应用场景十三、常见问题与解决方法SparkSQL最全介绍一、SparkSQL概述SparkSQL是A
- Pyspark中的int
闯闯桑
pythonsparkpandas大数据
在PySpark中,整数类型(int)与Python或Pandas中的int有所不同,因为它基于SparkSQL的数据类型系统。以下是PySpark中整数类型的详细说明:1.PySpark的整数类型PySpark主要使用IntegerType(32位)和LongType(64位)表示整数,对应SQL中的INT和BIGINT:PySpark类型SQL类型位数取值范围占用存储IntegerTypeIN
- 史上最全Hive面试题(10w字完整版)
zh_19995
hive
1、下述SQL在Hive、SparkSql两种引擎中,执行流程分别是什么,区别是什么HiveonMapreducehive的特性:hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapR
- spark sql解析过程详解
Chrollo
spark源码分析大数据sparkhadoop
sparksql解析sparksql解析过程这里直接引用论文SparkSQL:RelationalDataProcessinginSpark中的流程图,整体流程非常的清晰。下面将按顺序进去讲解。从Analysis这个阶段开始,主要流程都是在QueryExecution类中进行处理的。//Analysis阶段lazyvalanalyzed:LogicalPlan=executePhase(Query
- 第66课:SparkSQL下Parquet中PushDown的实现学习笔记
梦飞天
SparkSparkSQLPushDown
第66课:SparkSQL下Parquet中PushDown的实现学习笔记本期内容:1SparkSQL下的PushDown的价值2SparkSQL下的Parquet的PuahDown实现Hive中也有PushDown。PushDown可以极大减少数据输入,极大的提高处理效率。SparkSQL实现了PushDown,在Parquet文件中实现PushDown具有很重要的意义。PushDown是一种S
- Spark(四) SQL
小雨光
大数据spark
一、简介SparkSQL是Spark用来处理结构化数据的一个模块,它提供了2个编程抽象:DataFrame和DataSet,并且作为分布式SQL查询引擎的作用。之前Hive是将hql转换成MapReduce然后放在集群上执行,简化了编写MapReduce的复杂性,但是由于MapReduce执行的效率比较慢,所以产生了SparkSQL,它是将SQL转换成RDD,然后提交到集群执行,效率就会变快。二、
- spark java dataframe_Spark DataFrame简介(一)
克勒kk
sparkjavadataframe
1.DataFrame本片将介绍SparkRDD的限制以及DataFrame(DF)如何克服这些限制,从如何创建DataFrame,到DF的各种特性,以及如何优化执行计划。最后还会介绍DF有哪些限制。2.什么是SparkSQLDataFrame?从Spark1.3.0版本开始,DF开始被定义为指定到列的数据集(Dataset)。DFS类似于关系型数据库中的表或者像R/Python中的datafra
- 征服Spark as a Service
wangruoze
SparkSpark课程Spark培训Spark企业内训Spark讲师
Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台,基于RDD,Spark成功的构建起了一体化、多元化的大数据处理体系,在“OneStacktorulethemall”思想的引领下,Spark成功的使用SparkSQL、SparkStreaming、MLLib、GraphX近乎完美的解决了大数据中BatchProcessing、StreamingProcessing、Ad-hocQu
- 一天征服Spark!
wangruoze
SparkSpark课程Spark培训Spark企业内训Spark讲师
Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台,基于RDD,Spark成功的构建起了一体化、多元化的大数据处理体系,在“OneStacktorulethemall”思想的引领下,Spark成功的使用SparkSQL、SparkStreaming、MLLib、GraphX近乎完美的解决了大数据中BatchProcessing、StreamingProcessing、Ad-hocQu
- Spark SQL DataFrame 算子
猫猫姐
Spark实战sparksql大数据
SparkSQLDataFrame算子DataFrame与DatasetAPI提供了简单的、统一的并且更富表达力的API,简言之,与RDD与算子的组合相比,DataFrame与DatasetAPI更高级。DataFrame不仅可以使用SQL进行查询,其自身也具有灵活的API可以对数据进行查询,与RDDAPI相比,DataFrameAPI包含了更多的应用语义,所谓应用语义,就是能让计算框架知道你的目
- SparkSQL 优化实操
社恐码农
sparksql
一、基础优化配置1.资源配置优化#提交Spark作业时的资源配置示例spark-submit\--masteryarn\--executor-memory8G\--executor-cores4\--num-executors10\--confspark.sql.shuffle.partitions=200\your_spark_app.py参数说明:executor-memory:每个Execu
- JOIN使用的注意事项
对许
#Hive#Sparksparksqlhivesql
JOIN的使用要求在SparkSQL/HQL中,使用JOIN进行表关联时,需要注意以下要求:空值处理,多个表进行JOIN取值,在非INNERJOIN的情况下大多会取到NULL空值,对这些空值在必要情况下需要进行空值处理,一般使用COALESCE进行转换确认关联字段是否唯一对于字符型关联字段,如果无法保障不存在前后空格,最好进行TRIM处理后再关联关联条件关键字ON与JOIN关键字右对齐,AND进行
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- 4.2.5 Spark SQL 分区自动推断
酒城译痴无心剑
Spark3.x基础学习笔记SparkSQL自动分区推断
在本节实战中,我们学习了SparkSQL的分区自动推断功能,这是一种提升查询性能的有效手段。通过创建具有不同分区的目录结构,并在这些目录中放置JSON文件,我们模拟了一个分区表的环境。使用SparkSQL读取这些数据时,Spark能够自动识别分区结构,并将分区目录转化为DataFrame的分区字段。这一过程不仅展示了分区自动推断的便捷性,还说明了如何通过配置来控制分区列的数据类型推断。通过实际操作
- Spark SQL ---一般有用
okbin1991
sparksql大数据hive分布式
SparkSQLandDataFrame1.课程目标1.1.掌握SparkSQL的原理1.2.掌握DataFrame数据结构和使用方式1.3.熟练使用SparkSQL完成计算任务2.SparkSQL2.1.SparkSQL概述2.1.1.什么是SparkSQLSparkSQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。2.
- 4.8.2 利用Spark SQL计算总分与平均分
酒城译痴无心剑
Spark3.x基础学习笔记SparkSQL成绩统计
在本次实战中,我们的目标是利用SparkSQL计算学生的总分与平均分。首先,我们准备了包含学生成绩的数据文件,并将其上传至HDFS。接着,通过Spark的交互式编程环境,我们读取了成绩文件并将其转换为结构化的DataFrame。然后,我们创建了一个临时视图,并通过SQL查询计算了每个学生的总分和平均分。此外,我们还通过创建一个Spark项目来实现相同的功能。在项目中,我们定义了Maven依赖,配置
- Spark SQL进阶:解锁大数据处理的新姿势
£菜鸟也有梦
大数据基础大数据sparksqlhadoophive
目录一、SparkSQL,为何进阶?二、进阶特性深剖析2.1窗口函数:数据洞察的新视角2.2高级聚合:挖掘数据深度价值2.3自定义函数(UDF和UDTF):拓展功能边界三、性能优化实战3.1数据分区与缓存策略3.2解决数据倾斜问题3.3合理配置Spark参数四、实际项目案例4.1项目背景与数据介绍4.2SparkSQL进阶应用4.3优化过程与效果展示五、总结与展望一、SparkSQL,为何进阶?在
- Spark,连接MySQL数据库,添加数据,读取数据
Eternity......
spark大数据
以下是使用Spark/SparkSQL连接MySQL数据库、添加数据和读取数据的完整示例(需提前准备MySQL驱动包):一、环境准备1.下载MySQL驱动-下载mysql-connector-java-8.0.33.jar(或对应版本),放入Spark的jars目录,或提交任务时用--jars指定路径。2.启动SparkSessionscalaimportorg.apache.spark.sql.
- Spark入门秘籍
£菜鸟也有梦
大数据基础spark大数据分布式
目录一、Spark是什么?1.1内存计算:速度的飞跃1.2多语言支持:开发者的福音1.3丰富组件:一站式大数据处理平台二、Spark能做什么?2.1电商行业:洞察用户,精准营销2.2金融行业:防范风险,智慧决策2.3科研领域:加速研究,探索未知三、Spark核心组件揭秘3.1SparkCore3.2SparkSQL3.3SparkStreaming3.4SparkMLlib3.5SparkGrap
- Spark大数据分析案例(pycharm)
qrh_yogurt
spark数据分析pycharm
所需文件(将文件放在路径下,自己记住后面要用):通过百度网盘分享的文件:beauty_p....csv等4个文件链接:https://pan.baidu.com/s/1pBAus1yRgefveOc7NXRD-g?pwd=22dj提取码:22dj复制这段内容打开「百度网盘APP即可获取」工具:Spark下安装的pycharm5.202.窗口操作(SparkSQL)在处理数据时,经常会遇到数据的分类
- SparkSQL数据提取和保存
古拉拉明亮之神
大数据spark
在前面我们学习了RDD的算子还有分区器,今天我们来一起完成一个大一点的案例,通过案例来巩固学习内容。下面来做一个综合案例:读入csv文件中的数据,并做简单的数据筛选,然后写入数据到数据库。准备工作:建立一个.csv文件,然后添加基本数据。11,name,age12,xiaoming,2413,小花,19importorg.apache.spark.sql.SparkSessionimportjav
- Spark SQL 之 Analyzer
zhixingheyi_tian
sparksparksql大数据
SparkSQL之Analyzer//SpecialcaseforProjectasitsupportslateralcolumnalias.casep:Project=>valresolvedNoOuter=p.projectList.map(resolveExpressionByPlanChildren(_,p
- SparkSQL基本操作
Eternity......
spark大数据
以下是SparkSQL的基本操作总结,涵盖数据读取、转换、查询、写入等核心功能:一、初始化SparkSessionscalaimportorg.apache.spark.sql.SparkSessionvalspark=SparkSession.builder().appName("SparkSQLDemo").master("local[*]")//本地模式(集群用`spark://host:p
- 关于旗正规则引擎下载页面需要弹窗保存到本地目录的问题
何必如此
jsp超链接文件下载窗口
生成下载页面是需要选择“录入提交页面”,生成之后默认的下载页面<a>标签超链接为:<a href="<%=root_stimage%>stimage/image.jsp?filename=<%=strfile234%>&attachname=<%=java.net.URLEncoder.encode(file234filesourc
- 【Spark九十八】Standalone Cluster Mode下的资源调度源代码分析
bit1129
cluster
在分析源代码之前,首先对Standalone Cluster Mode的资源调度有一个基本的认识:
首先,运行一个Application需要Driver进程和一组Executor进程。在Standalone Cluster Mode下,Driver和Executor都是在Master的监护下给Worker发消息创建(Driver进程和Executor进程都需要分配内存和CPU,这就需要Maste
- linux上独立安装部署spark
daizj
linux安装spark1.4部署
下面讲一下linux上安装spark,以 Standalone Mode 安装
1)首先安装JDK
下载JDK:jdk-7u79-linux-x64.tar.gz ,版本是1.7以上都行,解压 tar -zxvf jdk-7u79-linux-x64.tar.gz
然后配置 ~/.bashrc&nb
- Java 字节码之解析一
周凡杨
java字节码javap
一: Java 字节代码的组织形式
类文件 {
OxCAFEBABE ,小版本号,大版本号,常量池大小,常量池数组,访问控制标记,当前类信息,父类信息,实现的接口个数,实现的接口信息数组,域个数,域信息数组,方法个数,方法信息数组,属性个数,属性信息数组
}
&nbs
- java各种小工具代码
g21121
java
1.数组转换成List
import java.util.Arrays;
Arrays.asList(Object[] obj); 2.判断一个String型是否有值
import org.springframework.util.StringUtils;
if (StringUtils.hasText(str)) 3.判断一个List是否有值
import org.spring
- 加快FineReport报表设计的几个心得体会
老A不折腾
finereport
一、从远程服务器大批量取数进行表样设计时,最好按“列顺序”取一个“空的SQL语句”,这样可提高设计速度。否则每次设计时模板均要从远程读取数据,速度相当慢!!
二、找一个富文本编辑软件(如NOTEPAD+)编辑SQL语句,这样会很好地检查语法。有时候带参数较多检查语法复杂时,结合FineReport中生成的日志,再找一个第三方数据库访问软件(如PL/SQL)进行数据检索,可以很快定位语法错误。
- mysql linux启动与停止
墙头上一根草
如何启动/停止/重启MySQL一、启动方式1、使用 service 启动:service mysqld start2、使用 mysqld 脚本启动:/etc/inint.d/mysqld start3、使用 safe_mysqld 启动:safe_mysqld&二、停止1、使用 service 启动:service mysqld stop2、使用 mysqld 脚本启动:/etc/inin
- Spring中事务管理浅谈
aijuans
spring事务管理
Spring中事务管理浅谈
By Tony Jiang@2012-1-20 Spring中对事务的声明式管理
拿一个XML举例
[html]
view plain
copy
print
?
<?xml version="1.0" encoding="UTF-8"?>&nb
- php中隐形字符65279(utf-8的BOM头)问题
alxw4616
php中隐形字符65279(utf-8的BOM头)问题
今天遇到一个问题. php输出JSON 前端在解析时发生问题:parsererror.
调试:
1.仔细对比字符串发现字符串拼写正确.怀疑是 非打印字符的问题.
2.逐一将字符串还原为unicode编码. 发现在字符串头的位置出现了一个 65279的非打印字符.
 
- 调用对象是否需要传递对象(初学者一定要注意这个问题)
百合不是茶
对象的传递与调用技巧
类和对象的简单的复习,在做项目的过程中有时候不知道怎样来调用类创建的对象,简单的几个类可以看清楚,一般在项目中创建十几个类往往就不知道怎么来看
为了以后能够看清楚,现在来回顾一下类和对象的创建,对象的调用和传递(前面写过一篇)
类和对象的基础概念:
JAVA中万事万物都是类 类有字段(属性),方法,嵌套类和嵌套接
- JDK1.5 AtomicLong实例
bijian1013
javathreadjava多线程AtomicLong
JDK1.5 AtomicLong实例
类 AtomicLong
可以用原子方式更新的 long 值。有关原子变量属性的描述,请参阅 java.util.concurrent.atomic 包规范。AtomicLong 可用在应用程序中(如以原子方式增加的序列号),并且不能用于替换 Long。但是,此类确实扩展了 Number,允许那些处理基于数字类的工具和实用工具进行统一访问。
 
- 自定义的RPC的Java实现
bijian1013
javarpc
网上看到纯java实现的RPC,很不错。
RPC的全名Remote Process Call,即远程过程调用。使用RPC,可以像使用本地的程序一样使用远程服务器上的程序。下面是一个简单的RPC 调用实例,从中可以看到RPC如何
- 【RPC框架Hessian一】Hessian RPC Hello World
bit1129
Hello world
什么是Hessian
The Hessian binary web service protocol makes web services usable without requiring a large framework, and without learning yet another alphabet soup of protocols. Because it is a binary p
- 【Spark九十五】Spark Shell操作Spark SQL
bit1129
shell
在Spark Shell上,通过创建HiveContext可以直接进行Hive操作
1. 操作Hive中已存在的表
[hadoop@hadoop bin]$ ./spark-shell
Spark assembly has been built with Hive, including Datanucleus jars on classpath
Welcom
- F5 往header加入客户端的ip
ronin47
when HTTP_RESPONSE {if {[HTTP::is_redirect]}{ HTTP::header replace Location [string map {:port/ /} [HTTP::header value Location]]HTTP::header replace Lo
- java-61-在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差. 求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5,
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/2541117420116135376632/
写了个java版的
public class GreatestLeftRightDiff {
/**
* Q61.在数组中,数字减去它右边(注意是右边)的数字得到一个数对之差。
* 求所有数对之差的最大值。例如在数组
- mongoDB 索引
开窍的石头
mongoDB索引
在这一节中我们讲讲在mongo中如何创建索引
得到当前查询的索引信息
db.user.find(_id:12).explain();
cursor: basicCoursor 指的是没有索引
&
- [硬件和系统]迎峰度夏
comsci
系统
从这几天的气温来看,今年夏天的高温天气可能会维持在一个比较长的时间内
所以,从现在开始准备渡过炎热的夏天。。。。
每间房屋要有一个落地电风扇,一个空调(空调的功率和房间的面积有密切的关系)
坐的,躺的地方要有凉垫,床上要有凉席
电脑的机箱
- 基于ThinkPHP开发的公司官网
cuiyadll
行业系统
后端基于ThinkPHP,前端基于jQuery和BootstrapCo.MZ 企业系统
轻量级企业网站管理系统
运行环境:PHP5.3+, MySQL5.0
系统预览
系统下载:http://www.tecmz.com
预览地址:http://co.tecmz.com
各种设备自适应
响应式的网站设计能够对用户产生友好度,并且对于
- Transaction and redelivery in JMS (JMS的事务和失败消息重发机制)
darrenzhu
jms事务承认MQacknowledge
JMS Message Delivery Reliability and Acknowledgement Patterns
http://wso2.com/library/articles/2013/01/jms-message-delivery-reliability-acknowledgement-patterns/
Transaction and redelivery in
- Centos添加硬盘完全教程
dcj3sjt126com
linuxcentoshardware
Linux的硬盘识别:
sda 表示第1块SCSI硬盘
hda 表示第1块IDE硬盘
scd0 表示第1个USB光驱
一般使用“fdisk -l”命
- yii2 restful web服务路由
dcj3sjt126com
PHPyii2
路由
随着资源和控制器类准备,您可以使用URL如 http://localhost/index.php?r=user/create访问资源,类似于你可以用正常的Web应用程序做法。
在实践中,你通常要用美观的URL并采取有优势的HTTP动词。 例如,请求POST /users意味着访问user/create动作。 这可以很容易地通过配置urlManager应用程序组件来完成 如下所示
- MongoDB查询(4)——游标和分页[八]
eksliang
mongodbMongoDB游标MongoDB深分页
转载请出自出处:http://eksliang.iteye.com/blog/2177567 一、游标
数据库使用游标返回find的执行结果。客户端对游标的实现通常能够对最终结果进行有效控制,从shell中定义一个游标非常简单,就是将查询结果分配给一个变量(用var声明的变量就是局部变量),便创建了一个游标,如下所示:
> var
- Activity的四种启动模式和onNewIntent()
gundumw100
android
Android中Activity启动模式详解
在Android中每个界面都是一个Activity,切换界面操作其实是多个不同Activity之间的实例化操作。在Android中Activity的启动模式决定了Activity的启动运行方式。
Android总Activity的启动模式分为四种:
Activity启动模式设置:
<acti
- 攻城狮送女友的CSS3生日蛋糕
ini
htmlWebhtml5csscss3
在线预览:http://keleyi.com/keleyi/phtml/html5/29.htm
代码如下:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>攻城狮送女友的CSS3生日蛋糕-柯乐义<
- 读源码学Servlet(1)GenericServlet 源码分析
jzinfo
tomcatWebservlet网络应用网络协议
Servlet API的核心就是javax.servlet.Servlet接口,所有的Servlet 类(抽象的或者自己写的)都必须实现这个接口。在Servlet接口中定义了5个方法,其中有3个方法是由Servlet 容器在Servlet的生命周期的不同阶段来调用的特定方法。
先看javax.servlet.servlet接口源码:
package
- JAVA进阶:VO(DTO)与PO(DAO)之间的转换
snoopy7713
javaVOHibernatepo
PO即 Persistence Object VO即 Value Object
VO和PO的主要区别在于: VO是独立的Java Object。 PO是由Hibernate纳入其实体容器(Entity Map)的对象,它代表了与数据库中某条记录对应的Hibernate实体,PO的变化在事务提交时将反应到实际数据库中。
实际上,这个VO被用作Data Transfer
- mongodb group by date 聚合查询日期 统计每天数据(信息量)
qiaolevip
每天进步一点点学习永无止境mongodb纵观千象
/* 1 */
{
"_id" : ObjectId("557ac1e2153c43c320393d9d"),
"msgType" : "text",
"sendTime" : ISODate("2015-06-12T11:26:26.000Z")
- java之18天 常用的类(一)
Luob.
MathDateSystemRuntimeRundom
System类
import java.util.Properties;
/**
* System:
* out:标准输出,默认是控制台
* in:标准输入,默认是键盘
*
* 描述系统的一些信息
* 获取系统的属性信息:Properties getProperties();
*
*
*
*/
public class Sy
- maven
wuai
maven
1、安装maven:解压缩、添加M2_HOME、添加环境变量path
2、创建maven_home文件夹,创建项目mvn_ch01,在其下面建立src、pom.xml,在src下面简历main、test、main下面建立java文件夹
3、编写类,在java文件夹下面依照类的包逐层创建文件夹,将此类放入最后一级文件夹
4、进入mvn_ch01
4.1、mvn compile ,执行后会在