- Paimon对比基于消息队列(如Kafka)的传统实时数仓方案的优势
lifallen
Paimon大数据数据库数据结构java分布式apache数据仓库
弊端:数据重复->优势:Paimon主键表原生去重原方案弊端(Kafka)问题:消息队列(Kafka)是仅支持追加(Append-Only)的日志流。当Flink作业发生故障恢复(Failover)或业务逻辑迭代重跑数据时,同样的数据会被再次写入消息队列,形成重复数据。影响:下游应用(如DWS层、ADS层或直接对接的BI报表)必须自己实现复杂的去重逻辑,这不仅消耗大量计算资源(“资源消耗至少增加一
- [特殊字符] 实时数据洪流突围战:Flink+Paimon实现毫秒级分析的架构革命(附压测报告)——日均百亿级数据处理成本降低60%的工业级方案
Lucas55555555
flink大数据
引言:流批一体的时代拐点据阿里云2025白皮书显示,实时数据处理需求年增速达240%,但传统Lambda架构资源消耗占比超运维成本的70%。某电商平台借助Flink+Paimon重构实时数仓后,端到端延迟从分钟级压缩至800ms,计算资源节省5.6万核/月。技术红利窗口期:2025年ApachePaimon1.0正式发布,支持秒级快照与湖仓一体,成为替代Iceberg的新范式一、痛点深挖:实时数仓
- 准备数仓实习面试中回顾SQL题
zhuiQiuMX
sql
550-game-play-analysis-ivhttps://leetcode.com/problems/game-play-analysis-iv/description/连续两天登录的比率,2025年6月10日星期二,date_sub#编写解决方案,报告在首次登录的第二天再次登录的玩家的比率,四舍五入到小数点后两位。换句话说,你需要计算从首次登录日期开始至少连续两天登录的玩家的数量,然后除
- 阿里云SelectDB:开启实时数仓新时代
云资源服务商
阿里云云计算数据库云原生
一、引言在当今大数据时代,数据如同企业的“石油”,蕴含着巨大的价值。随着数据量呈指数级增长,企业对于实时数据分析的需求愈发迫切。实时数据分析能够帮助企业及时捕捉市场动态,快速做出决策,从而在激烈的市场竞争中占据优势。无论是电商企业需要实时分析用户购买行为以进行精准营销,还是金融机构需要实时监测风险以保障资金安全,实时数据分析都发挥着关键作用。阿里云SelectDB作为一款专为实时数据分析打造的云原
- 储能业 | 低成本部署!DolphinDB 打造抽水蓄能一体化解决方案
DolphinDB智臾科技
物联网数据库大数据DolphinDB实时计算抽水蓄能电力
导语在电力行业抽水蓄电场景中,电力集团可以基于DolphinDB搭建轻量化实时数仓,有效破解高频数据写入、万亿级数据存储和秒级实时计算等核心难题。同时,该方案助力集团降本增效,提升运维效率,并实现对多个电站数据的统一管理与调度,加快数字化转型步伐。一、行业背景构建清洁低碳、安全高效的新型能源电力系统是实现“双碳”目标的一大关键任务。其中,抽水蓄能作为当前最成熟、最具规模化应用前景的物理储能技术,正
- 实时数仓工具-SelectDB
清平乐的技术博客
实时数仓数据仓库
一、SelectDB简介官网:https://www.selectdb.com/1、ApacheDorisApacheDoris是一款采用MPP架构的实时分布式OLAP数据仓库,专注于高效的实时数据分析。Doris项目于2013年内部开发,2017年正式开源,目前在GitHub上获得了接近13,000星,全球已有超过5,000家企业采用,社区活跃度极高,累计贡献者超过650人,且曾连续数月在大数据
- 针对数据仓库方向的大数据算法工程师面试经验总结
巴基海贼王
数据仓库大数据算法
⚙️一、技术核心考察点数据建模能力星型vs雪花模型:面试官常要求对比两种模型。星型模型(事实表+冗余维度表)查询性能高但存储冗余;雪花模型(规范化维度表)减少冗余但增加JOIN复杂度。需结合场景选择,如实时分析首选星型。建模实战题:例如设计电商销售数仓,需明确事实表(订单流水)、维度表(商品、用户、时间),并解释粒度选择(如订单级)。ETL流程与优化增量抽取方案:面试高频题。需掌握基于时间戳、CD
- 现代数据湖架构全景解析:存储、表格式、计算引擎与元数据服务的协同生态
讲文明的喜羊羊拒绝pua
大数据架构数据湖SparkIcebergAmoro对象存储
本文全面剖析现代数据湖架构的核心组件,深入探讨对象存储(OSS/S3)、表格式(Iceberg/Hudi/DeltaLake)、计算引擎(Spark/Flink/Presto)及元数据服务(HMS/Amoro)的协作关系,并提供企业级选型指南。一、数据湖架构演进与核心价值数据湖架构演进历程现代数据湖核心价值矩阵维度传统数仓现代数据湖存储成本高(专有硬件)低(对象存储)数据时效性小时/天级分钟/秒级
- 湖仓一体实时数据采集与存储实践
danny-IT技术博客
企业级SQLServer深度实践springbootsparkCDCDATALAKE
文章目录湖仓一体实时数据采集与存储实践1.实时数仓演进:从传统数仓到湖仓一体1.1传统数仓的局限性:批处理延迟与数据孤岛1.2湖仓一体(Lakehouse)的核心价值1.3典型行业场景解析案例1:金融实时风控案例2:电商库存同步2.CDC实时数据捕获技术选型2.1主流CDC技术对比Debezium实战配置2.2数据捕获模式详解全量快照模式增量日志模式2.3异常处理策略断点续传实现数据一致性保障3.
- maxcomputer 和 hologres中的EXTERNAL TABLE 和 FOREIGN TABLE
静听山水
#Hologres大数据
在阿里云的大数据和实时数仓产品中,MaxCompute和Hologres都支持类似于EXTERNALTABLE和FOREIGNTABLE的机制,但它们的实现和语义有所不同。下面分别说明:☁️一、MaxCompute中的EXTERNALTABLE和FOREIGNTABLE1.EXTERNALTABLEinMaxComputeMaxCompute的EXTERNALTABLE是指外部表,用于读取不属于M
- 【StarRocks系列】StarRocks vs Mysql
漫步者TZ
StarRocksmysql数据库StarRocks分布式数据库
目录StarRocks简介核心特性典型应用场景StarRocksvsMySQL:核心区别详解关键差异总结如何选择?StarRocks简介StarRocks是一款高性能、全场景、分布式、实时分析型的数据库(MPP-大规模并行处理)。它诞生于解决现代企业对海量数据进行快速、复杂分析的需求,尤其是在实时数据仓库、用户行为分析、日志分析、统一数仓等场景下表现卓越。核心特性MPP架构:采用无共享架构,计算和
- SPL轻量级多源混合计算
LuckJudy
数据计算多源混算esProcSPL
多样性数据源混合计算是常态需求,同构或异构数据库之间、文件与数据库、NoSQL与文件等,理论上任何数据存储之间都涉及数据混合计算和分析。但混算需求目前技术解决的并不好,同构库之间某些数据库还能支持,而完全异构的数据源实施混算就比较麻烦。经常要借助逻辑数据仓库,但基于SQL的逻辑数仓不仅能力有限,而且体系过于沉重,经常会比应用本身还复杂,只适合应用于大型场景中,并不适合众多日常的轻量多源混算场景。S
- 云原生数仓 vs 传统数仓:深度拆解区别、优劣势及主流选型
limnade
云原生数据仓库
云原生数仓vs传统数仓:深度拆解区别、优劣势及主流选型在数据驱动业务的当下,数据仓库作为企业数据中枢,承载着核心决策支持使命。随着云技术普及,云原生数仓与传统数仓的选型博弈愈发关键。本文从架构逻辑、核心能力到落地实践,深度拆解两者区别、优劣势,并梳理主流数仓方案,帮你精准锚定适配选型。一、底层逻辑:架构设计差异(一)传统数仓:紧耦合“巨石架构”传统数仓(如Teradata经典方案、Greenplu
- 血缘系统 datahub + Sqllineage
CesarChoy
linux大数据
1.说明业界比较主流的数据血缘系统,目前还没能达到与调度系统耦合,最大难点在于代码解析。当某张表下游太多时(特别是维度表),展示也失去了意义,所以多用于排查某张应用表的上游从哪里开。使用方一般为对数仓表结构不太熟悉的业务/数据经理想要了解有哪些数据。2.部署2.1yumyuminstall-yzlib-develbzip2-devel\openssl-develncurses-develepel-
- 从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
镜舟科技
金融湖仓一体镜舟数据库数据仓库StarRocks存算分离
作者:吴岐诗,杭银消费金融大数据应用开发工程师本文整理自杭银消费金融大数据应用开发工程师在StarRocksSummitAsia2024的分享引言:融合数据湖与数仓的创新之路在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金融作为一家持牌消费金融机构,虽以金融业务为核心,却始终保持着强烈的科技创新精神,发明专利的话屈居行业第二。面对业务高速发展带来的数据挑战,公司开始了一场围绕数据基础设施
- Fusion引擎赋能:流利说如何用阿里云Serverless Spark实现数仓计算加速
阿里云大数据AI技术
阿里云serverlessspark云计算大数据人工智能
作者:流利说Ibson(大数据负责人)/Bruce(数据工程师)背景介绍行业流利说是领先的科技驱动的教育公司,公司自主研发了领先的英语口语评测、写作打分引擎和深度自适应学习系统,致力于为用户提供一整套系统性的英语学习解决方案,从听、说、读、写多个维度提升用户的英语水平。业务特征AI打分:利用大数据和人工智能算法对用户英语口语评测、写作打分。个性化推荐:根据用户学习目标及评级,自动推荐专项和强化课程
- Fusion 引擎赋能:流利说如何用阿里云 Serverless Spark 实现数仓计算加速
Apache Spark中国社区
阿里云serverlessspark云计算云原生
作者:流利说Ibson(大数据负责人)/Bruce(数据工程师)01背景介绍行业流利说是领先的科技驱动的教育公司,公司自主研发了领先的英语口语评测、写作打分引擎和深度自适应学习系统,致力于为用户提供一整套系统性的英语学习解决方案,从听、说、读、写多个维度提升用户的英语水平。业务特征AI打分:利用大数据和人工智能算法对用户英语口语评测、写作打分。个性化推荐:根据用户学习目标及评级,自动推荐专项和强化
- HAWQ 取代传统数仓实践(十八) —— 层次维度
wzy0623
更好的Hadoop数据仓库解决方案——HAWQ实战演练HAWQ数据仓库
目录一、层次维度简介二、固定深度的层次三、多路径层次四、参差不齐的层次五、递归一、层次维度简介大多数维度都具有一个或多个层次,例如,示例数据仓库中的日期维度就有一个四级层次:年、季度、月和日,这些级别用date_dim表里的列表示。日期维度是一个单路径层次,因为除了年-季度-月-日这条路径外,它没有任何其他层次。为了识别数据仓库里一个维度的层次,首先要理解维度中列的含义,然后识别两个或多个列是否具
- 数据仓库——如何量化评价一个数据仓库的好坏?
辉哥大数据
【大数据面试宝典】数据仓库数据库大数据分布式
为了回答这个问题,小编特意邀请了我司的数仓专家FrankLi。他在加入Kyligence之前,曾在SAP数据仓库领域工作十多年,在两家美资世界五百强企业带领中国数仓团队实施维护了多个全球化数仓项目,包括全新实施、维护、系统升级和迁移等。Kyligence作为数仓中的核心组件,公司也参与了多个大型机构中数仓升级项目。就这些项目经验,小编总结了一些心得来帮助企业考量数据仓库的优劣。首先,数据仓库并不是
- 数仓多源异构数据整合策略:融合与分离的实践指南
莫叫石榴姐
数字化建设通关指南#数据建模人工智能数据仓库数据分析大数据
目录引言第一章问题分析与决策框架1.1典型业务场景1.2关键矛盾点1.3三维决策模型
- 记一次·Spark读Hbase
记一次·Spark读Hbase一、背景过年回来,数仓发现hive的一个表丢数据了,需要想办法补数据。这个表是flume消费kafka写hive。但是kafka里只保存最近7天数据,有部分数据kafka里已经没有了。不过这份数据会同时被消费到HBase内存储一份,并且HBase内的数据是正常的。所以这次任务是读HBase数据写Hive表。HBase表内,只有一个列族info,列族内只有一个列valu
- Flink进阶之路:解锁大数据处理新境界
£菜鸟也有梦
大数据基础flink大数据hadoopspark
目录一、Flink基础回顾二、Flink进阶知识深入2.1数据类型与序列化2.2双流Join操作2.3复杂事件处理(CEP)2.4状态管理与优化三、Flink在实际场景中的应用3.1实时智能推荐3.2实时欺诈检测3.3实时数仓与ETL四、Flink性能优化策略4.1网络传输优化4.2状态管理优化4.3检查点优化五、总结与展望一、Flink基础回顾在深入探索Flink进阶知识之前,我们先来简单回顾一
- Doris实践——叮咚买菜基于OLAP引擎的应用实践
吵吵叭火
大数据大数据数据仓库
目录前言一、业务需求二、选型与对比三、架构体系四、应用实践4.1实时数据分析4.2B端业务查询取数4.3标签系统4.4BI看板4.5OLAP多维分析五、优化经验六、总结原文大佬介绍的这篇Doris数仓建设实践有借鉴意义的,这些摘抄下来用作沉淀学习。如有侵权请告知~前言随着叮咚买菜业务的发展,不同的业务场景对数据分析提出了不同的需求,希望引入一款实时OLAP数据库,构建一个灵活的多维实时查询和分析的
- 开源免费数据同步工具全景解析与实战指南
社恐码农
Hivemysqlpostgres开源数据同步工具
一、数据同步工具生态全景图1.1工具分类矩阵类型代表工具核心能力适用场景开源协议ETL工具DataX、SeaTunnel异构数据源批量同步数据仓库构建Apache2.0CDC工具FlinkCDC、Canal实时数据变更捕获实时数仓/监控系统Apache2.0文件同步GoodSync、FreeFileSync跨设备文件实时同步备份/多云同步GPLv3数据库复制SymmetricDS、MaxScale
- 最全Doris实战——结合Flink构建极速易用的实时数仓_flink doris
2301_82241942
程序员flinklinq大数据
3.6.4执行层查询加速四、行业最佳实践4.1跨境电商4.2运营服务商4.3供应链企业原文大佬的这篇Doris+Flink构建实时数仓的实战文章整体写的很深入,这里直接摘抄下来用作学习和知识沉淀。本篇文章介绍如何基于Doris和Flink快速构建一个极速易用的实时数仓,包括数据同步、数据集成、数仓分层、数据更新、性能提升等方面的具体应用方案。一、实时数仓的需求与挑战先介绍一下传统的数据架构如何设计
- 实时数仓flick+clickhouse启动命令
遥遥领先zzl
服务器数据库运维
FlinkCDC环境部署启动flink-yarn模式1、启动zookeeperzk.shstart2、启动DFS,Hadoop集群start-dfs.sh3、启动yarnstart-yarn.sh4、启动kafka(如果需要在启用)启动Kafka集群bin/kafka-server-start.sh-daemonconfig/server.properties查看Kafkatopic列表bin/k
- 实时数据仓库存储引擎革新:从Lambda到Kappa++架构的底层技术演进
尘烬海
数据仓库架构service_mesh网络协议深度学习平面分布式
引言:实时数仓的存储革命迫在眉睫在数字化转型浪潮中,企业对数据时效性的需求正从T+1小时向秒级演进。据Gartner最新报告显示,到2025年将有75%的企业将实时数据分析能力作为核心竞争力指标。传统基于HDFS+Hive的存储架构时延高达分钟级,已无法满足实时风控、IoT设备监控等场景需求。本文将深入探讨存储引擎技术创新如何突破实时数仓的性能瓶颈。一、传统架构之殇:存储引擎的三大核心挑战1.1写
- 未来数仓的构想
小Tomkk
论坛大数据大数据未来数仓
未来数仓的构想周日再北京参加亚马逊云科技的开发者usergroup会议,下面是一个会议演讲内容,对我很有启发随着大数据的蓬勃发展,数据仓库的架构逐渐从传统的、单一的数据存储结构转向更加智能、灵活的分布式架构。本文将探讨未来数仓的构想,以及如何通过智能代理(Agent)和新兴技术来推动数据的流转与分析。文章目录未来数仓的构想1.未来数仓的架构模型1.1数据交换层(DataExchangeLayer)
- 数据仓库实践:使用SQL汇总BOM数据分析维度
The_Singing_Towers
数据仓库实践数据仓库数据分析pythonsql数据库笔记
背景物料清单(BillofMaterials,BOM)主数据是指在制造业中,用于描述产品结构、组件和制造工艺的核心数据。将BOM主数据引入数仓,可以保证数据流转和分析过程中保证与制造过程的一致,以确保分析结果的准确。在ERP数据库或者PLM数据库中保存的BOM清单一般是一对多关系,但从企业全局看,上阶料产品和下阶料(子阶料)一般是多对多的关系;需要兼容的关系一般有半成品、替代料、共用料等;BOM数
- 数据仓库建设 : 主题域简介
goTsHgo
数据仓库大数据大数据数据仓库
在数据仓库建设中,主题域(SubjectArea)是根据业务需求和数据特点划分的数据区域,每个主题域代表一个特定的业务领域或功能模块。主题域是数据模型的一个重要概念,它帮助构建逻辑清晰、层次分明的数据结构。主题域的设计基于企业的业务结构,将业务中的关键部分提炼出来,划分为若干个主题域。每个主题域对应一个特定的业务领域,便于组织、存储和分析业务数据。以下是常见的数仓主题域及其对应的功能:1.客户管理
- [星球大战]阿纳金的背叛
comsci
本来杰迪圣殿的长老是不同意让阿纳金接受训练的.........
但是由于政治原因,长老会妥协了...这给邪恶的力量带来了机会
所以......现代的地球联邦接受了这个教训...绝对不让某些年轻人进入学院
- 看懂它,你就可以任性的玩耍了!
aijuans
JavaScript
javascript作为前端开发的标配技能,如果不掌握好它的三大特点:1.原型 2.作用域 3. 闭包 ,又怎么可以说你学好了这门语言呢?如果标配的技能都没有撑握好,怎么可以任性的玩耍呢?怎么验证自己学好了以上三个基本点呢,我找到一段不错的代码,稍加改动,如果能够读懂它,那么你就可以任性了。
function jClass(b
- Java常用工具包 Jodd
Kai_Ge
javajodd
Jodd 是一个开源的 Java 工具集, 包含一些实用的工具类和小型框架。简单,却很强大! 写道 Jodd = Tools + IoC + MVC + DB + AOP + TX + JSON + HTML < 1.5 Mb
Jodd 被分成众多模块,按需选择,其中
工具类模块有:
jodd-core &nb
- SpringMvc下载
120153216
springMVC
@RequestMapping(value = WebUrlConstant.DOWNLOAD)
public void download(HttpServletRequest request,HttpServletResponse response,String fileName) {
OutputStream os = null;
InputStream is = null;
- Python 标准异常总结
2002wmj
python
Python标准异常总结
AssertionError 断言语句(assert)失败 AttributeError 尝试访问未知的对象属性 EOFError 用户输入文件末尾标志EOF(Ctrl+d) FloatingPointError 浮点计算错误 GeneratorExit generator.close()方法被调用的时候 ImportError 导入模块失
- SQL函数返回临时表结构的数据用于查询
357029540
SQL Server
这两天在做一个查询的SQL,这个SQL的一个条件是通过游标实现另外两张表查询出一个多条数据,这些数据都是INT类型,然后用IN条件进行查询,并且查询这两张表需要通过外部传入参数才能查询出所需数据,于是想到了用SQL函数返回值,并且也这样做了,由于是返回多条数据,所以把查询出来的INT类型值都拼接为了字符串,这时就遇到问题了,在查询SQL中因为条件是INT值,SQL函数的CAST和CONVERST都
- java 时间格式化 | 比较大小| 时区 个人笔记
7454103
javaeclipsetomcatcMyEclipse
个人总结! 不当之处多多包含!
引用 1.0 如何设置 tomcat 的时区:
位置:(catalina.bat---JAVA_OPTS 下面加上)
set JAVA_OPT
- 时间获取Clander的用法
adminjun
Clander时间
/**
* 得到几天前的时间
* @param d
* @param day
* @return
*/
public static Date getDateBefore(Date d,int day){
Calend
- JVM初探与设置
aijuans
java
JVM是Java Virtual Machine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。Java虚拟机包括一套字节码指令集、一组寄存器、一个栈、一个垃圾回收堆和一个存储方法域。 JVM屏蔽了与具体操作系统平台相关的信息,使Java程序只需生成在Java虚拟机上运行的目标代码(字节码),就可以在多种平台
- SQL中ON和WHERE的区别
avords
SQL中ON和WHERE的区别
数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户。 www.2cto.com 在使用left jion时,on和where条件的区别如下: 1、 on条件是在生成临时表时使用的条件,它不管on中的条件是否为真,都会返回左边表中的记录。
- 说说自信
houxinyou
工作生活
自信的来源分为两种,一种是源于实力,一种源于头脑.实力是一个综合的评定,有自身的能力,能利用的资源等.比如我想去月亮上,要身体素质过硬,还要有飞船等等一系列的东西.这些都属于实力的一部分.而头脑不同,只要你头脑够简单就可以了!同样要上月亮上,你想,我一跳,1米,我多跳几下,跳个几年,应该就到了!什么?你说我会往下掉?你笨呀你!找个东西踩一下不就行了吗?
无论工作还
- WEBLOGIC事务超时设置
bijian1013
weblogicjta事务超时
系统中统计数据,由于调用统计过程,执行时间超过了weblogic设置的时间,提示如下错误:
统计数据出错!
原因:The transaction is no longer active - status: 'Rolling Back. [Reason=weblogic.transaction.internal
- 两年已过去,再看该如何快速融入新团队
bingyingao
java互联网融入架构新团队
偶得的空闲,翻到了两年前的帖子
该如何快速融入一个新团队,有所感触,就记下来,为下一个两年后的今天做参考。
时隔两年半之后的今天,再来看当初的这个博客,别有一番滋味。而我已经于今年三月份离开了当初所在的团队,加入另外的一个项目组,2011年的这篇博客之后的时光,我很好的融入了那个团队,而直到现在和同事们关系都特别好。大家在短短一年半的时间离一起经历了一
- 【Spark七十七】Spark分析Nginx和Apache的access.log
bit1129
apache
Spark分析Nginx和Apache的access.log,第一个问题是要对Nginx和Apache的access.log文件进行按行解析,按行解析就的方法是正则表达式:
Nginx的access.log解析正则表达式
val PATTERN = """([^ ]*) ([^ ]*) ([^ ]*) (\\[.*\\]) (\&q
- Erlang patch
bookjovi
erlang
Totally five patchs committed to erlang otp, just small patchs.
IMO, erlang really is a interesting programming language, I really like its concurrency feature.
but the functional programming style
- log4j日志路径中加入日期
bro_feng
javalog4j
要用log4j使用记录日志,日志路径有每日的日期,文件大小5M新增文件。
实现方式
log4j:
<appender name="serviceLog"
class="org.apache.log4j.RollingFileAppender">
<param name="Encoding" v
- 读《研磨设计模式》-代码笔记-桥接模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 个人觉得关于桥接模式的例子,蜡笔和毛笔这个例子是最贴切的:http://www.cnblogs.com/zhenyulu/articles/67016.html
* 笔和颜色是可分离的,蜡笔把两者耦合在一起了:一支蜡笔只有一种
- windows7下SVN和Eclipse插件安装
chenyu19891124
eclipse插件
今天花了一天时间弄SVN和Eclipse插件的安装,今天弄好了。svn插件和Eclipse整合有两种方式,一种是直接下载插件包,二种是通过Eclipse在线更新。由于之前Eclipse版本和svn插件版本有差别,始终是没装上。最后在网上找到了适合的版本。所用的环境系统:windows7JDK:1.7svn插件包版本:1.8.16Eclipse:3.7.2工具下载地址:Eclipse下在地址:htt
- [转帖]工作流引擎设计思路
comsci
设计模式工作应用服务器workflow企业应用
作为国内的同行,我非常希望在流程设计方面和大家交流,刚发现篇好文(那么好的文章,现在才发现,可惜),关于流程设计的一些原理,个人觉得本文站得高,看得远,比俺的文章有深度,转载如下
=================================================================================
自开博以来不断有朋友来探讨工作流引擎该如何
- Linux 查看内存,CPU及硬盘大小的方法
daizj
linuxcpu内存硬盘大小
一、查看CPU信息的命令
[root@R4 ~]# cat /proc/cpuinfo |grep "model name" && cat /proc/cpuinfo |grep "physical id"
model name : Intel(R) Xeon(R) CPU X5450 @ 3.00GHz
model name :
- linux 踢出在线用户
dongwei_6688
linux
两个步骤:
1.用w命令找到要踢出的用户,比如下面:
[root@localhost ~]# w
18:16:55 up 39 days, 8:27, 3 users, load average: 0.03, 0.03, 0.00
USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT
- 放手吧,就像不曾拥有过一样
dcj3sjt126com
内容提要:
静悠悠编著的《放手吧就像不曾拥有过一样》集结“全球华语世界最舒缓心灵”的精华故事,触碰生命最深层次的感动,献给全世界亿万读者。《放手吧就像不曾拥有过一样》的作者衷心地祝愿每一位读者都给自己一个重新出发的理由,将那些令你痛苦的、扛起的、背负的,一并都放下吧!把憔悴的面容换做一种清淡的微笑,把沉重的步伐调节成春天五线谱上的音符,让自己踏着轻快的节奏,在人生的海面上悠然漂荡,享受宁静与
- php二进制安全的含义
dcj3sjt126com
PHP
PHP里,有string的概念。
string里,每个字符的大小为byte(与PHP相比,Java的每个字符为Character,是UTF8字符,C语言的每个字符可以在编译时选择)。
byte里,有ASCII代码的字符,例如ABC,123,abc,也有一些特殊字符,例如回车,退格之类的。
特殊字符很多是不能显示的。或者说,他们的显示方式没有标准,例如编码65到哪儿都是字母A,编码97到哪儿都是字符
- Linux下禁用T440s,X240的一体化触摸板(touchpad)
gashero
linuxThinkPad触摸板
自打1月买了Thinkpad T440s就一直很火大,其中最让人恼火的莫过于触摸板。
Thinkpad的经典就包括用了小红点(TrackPoint)。但是小红点只能定位,还是需要鼠标的左右键的。但是自打T440s等开始启用了一体化触摸板,不再有实体的按键了。问题是要是好用也行。
实际使用中,触摸板一堆问题,比如定位有抖动,以及按键时会有飘逸。这就导致了单击经常就
- graph_dfs
hcx2013
Graph
package edu.xidian.graph;
class MyStack {
private final int SIZE = 20;
private int[] st;
private int top;
public MyStack() {
st = new int[SIZE];
top = -1;
}
public void push(i
- Spring4.1新特性——Spring核心部分及其他
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- 配置HiveServer2的安全策略之自定义用户名密码验证
liyonghui160com
具体从网上看
http://doc.mapr.com/display/MapR/Using+HiveServer2#UsingHiveServer2-ConfiguringCustomAuthentication
LDAP Authentication using OpenLDAP
Setting
- 一位30多的程序员生涯经验总结
pda158
编程工作生活咨询
1.客户在接触到产品之后,才会真正明白自己的需求。
这是我在我的第一份工作上面学来的。只有当我们给客户展示产品的时候,他们才会意识到哪些是必须的。给出一个功能性原型设计远远比一张长长的文字表格要好。 2.只要有充足的时间,所有安全防御系统都将失败。
安全防御现如今是全世界都在关注的大课题、大挑战。我们必须时时刻刻积极完善它,因为黑客只要有一次成功,就可以彻底打败你。 3.
- 分布式web服务架构的演变
自由的奴隶
linuxWeb应用服务器互联网
最开始,由于某些想法,于是在互联网上搭建了一个网站,这个时候甚至有可能主机都是租借的,但由于这篇文章我们只关注架构的演变历程,因此就假设这个时候已经是托管了一台主机,并且有一定的带宽了,这个时候由于网站具备了一定的特色,吸引了部分人访问,逐渐你发现系统的压力越来越高,响应速度越来越慢,而这个时候比较明显的是数据库和应用互相影响,应用出问题了,数据库也很容易出现问题,而数据库出问题的时候,应用也容易
- 初探Druid连接池之二——慢SQL日志记录
xingsan_zhang
日志连接池druid慢SQL
由于工作原因,这里先不说连接数据库部分的配置,后面会补上,直接进入慢SQL日志记录。
1.applicationContext.xml中增加如下配置:
<bean abstract="true" id="mysql_database" class="com.alibaba.druid.pool.DruidDataSourc