锁持有者管理器AbstractOwnableSynchronizer: http://donald-draper.iteye.com/blog/2360109
AQS线程挂起辅助类LockSupport: http://donald-draper.iteye.com/blog/2360206
AQS详解-CLH队列,线程等待状态: http://donald-draper.iteye.com/blog/2360256
AQS-Condition详解: http://donald-draper.iteye.com/blog/2360381
可重入锁ReentrantLock详解: http://donald-draper.iteye.com/blog/2360411
CountDownLatch详解: http://donald-draper.iteye.com/blog/2360597
CyclicBarrier详解: http://donald-draper.iteye.com/blog/2360812
Semaphore详解: http://donald-draper.iteye.com/blog/2361033
/* * ORACLE PROPRIETARY/CONFIDENTIAL. Use is subject to license terms. * Written by Doug Lea with assistance from members of JCP JSR-166 * Expert Group and released to the public domain, as explained at * http://creativecommons.org/publicdomain/zero/1.0/ */ package java.util.concurrent.locks; import java.util.concurrent.*; import java.util.concurrent.atomic.*; import java.util.*; /** * An implementation of {@link ReadWriteLock} supporting similar * semantics to {@link ReentrantLock}. *This class has the following properties: *ReadWriteLock与ReentrantLock有着相似的性质 * [list] *
This class does not impose a reader or writer preference * ordering for lock access. However, it does support an optional * [i]fairness[/i] policy. * ReadWriteLock不强调读写锁获取的顺序,但支持公平策略选型。 *
-
*
- Non-fair mode (default) *
- When constructed as non-fair (the default), the order of entry
* to the read and write lock is unspecified, subject to reentrancy
* constraints. A nonfair lock that is continuously contended may
* indefinitely postpone one or more reader or writer threads, but
* will normally have higher throughput than a fair lock.
*
* ReadWriteLock默认情况下,是非公平锁,线程获取读写锁的顺序是不确定的,主要是 根据可重入策略。非公平锁,会持续的竞争锁,也许会推迟其他线程获取读写锁,但是 ,非公平策略的吞度量比公平锁要高。 *
- Fair mode *
- When constructed as fair, threads contend for entry using an
* approximately arrival-order policy. When the currently held lock
* is released either the longest-waiting single writer thread will
* be assigned the write lock, or if there is a group of reader threads
* waiting longer than all waiting writer threads, that group will be
* assigned the read lock.
*
公平模式下,线程获取锁的策略,近似先到先得的策略。如果锁持有者释放锁,等待最长的
写线程将会获取写锁,若果所有读线程等待的时间大于写线程,读线程组将会获取读锁。
*
A thread that tries to acquire a fair read lock (non-reentrantly) * will block if either the write lock is held, or there is a waiting * writer thread. The thread will not acquire the read lock until * after the oldest currently waiting writer thread has acquired and * released the write lock. Of course, if a waiting writer abandons * its wait, leaving one or more reader threads as the longest waiters * in the queue with the write lock free, then those readers will be * assigned the read lock. * 当一个线程尝试获取一个非重入的读锁,如果其他线程持有写锁,或有线程等待写锁, 将会阻塞。直到等待最久的写线程获取写锁,并释放,等待非重入读锁的线程才能获取锁。 当一个等待写线程取消等待,同时又一个或多个线程读线程等待读锁,写锁释放,那么这些 读线程将获取读锁。 *
A thread that tries to acquire a fair write lock (non-reentrantly) * will block unless both the read lock and write lock are free (which * implies there are no waiting threads). (Note that the non-blocking * {@link ReadLock#tryLock()} and {@link WriteLock#tryLock()} methods * do not honor this fair setting and will acquire the lock if it is * possible, regardless of waiting threads.) *
*
This lock allows both readers and writers to reacquire read or * write locks in the style of a {@link ReentrantLock}. Non-reentrant * readers are not allowed until all write locks held by the writing * thread have been released. 如果锁是可重入的, ReadWriteLock允许读写线程重复获取锁。非重入锁的情况下, 读线程是不允许重复获取锁,直到所有持有写锁的线程,都释放写锁时。 * *
Additionally, a writer can acquire the read lock, but not * vice-versa. Among other applications, reentrancy can be useful * when write locks are held during calls or callbacks to methods that * perform reads under read locks. If a reader tries to acquire the * write lock it will never succeed. * 另外,一个写线程获取锁后,允许获取读锁,反之,则不行。在一些应用中,可重入策略 是非常有用的,比如当线程持有写锁时,调用方法或回调方法执行读操作。一个读线程尝试获取 写锁时,绝不不会成功滴。 *
Reentrancy also allows downgrading from the write lock to a read lock, * by acquiring the write lock, then the read lock and then releasing the * write lock. However, upgrading from a read lock to the write lock is * not possible. * 锁降级,可重入策略下,通过一个线程在获取写锁的情况,获取读锁,然后释放写锁的方式, 允许线程从写锁降级到读锁。然而一个读锁升级到写锁是不可能发生的。 *
The read lock and write lock both support interruption during lock * acquisition. *在获取锁的过程中,写锁和读锁都支持中断。 *
The write lock provides a {@link Condition} implementation that * behaves in the same way, with respect to the write lock, as the * {@link Condition} implementation provided by * {@link ReentrantLock#newCondition} does for {@link ReentrantLock}. * This {@link Condition} can, of course, only be used with the write lock. * 条件支持,写锁通过ReentrantLock的newCondition提供了一个条件与写锁的功能相同, 这个条件只能用于写锁。 *
The read lock does not support a {@link Condition} and * {@code readLock().newCondition()} throws * {@code UnsupportedOperationException}. * 写锁不支持条件,当调用readLock().newCondition()时,将抛出UnsupportedOperationException。 *
This class supports methods to determine whether locks * are held or contended. These methods are designed for monitoring * system state, not for synchronization control. * [/list] * ReentrantReadWriteLock提供了一些方法,用于判断哪个线程持有锁和竞争锁。 这些方法主要是为了监控锁的系统状态,而不是为了同步控制。 *
Serialization of this class behaves in the same way as built-in * locks: a deserialized lock is in the unlocked state, regardless of * its state when serialized. * ReentrantReadWriteLock的序列化与locks相同,当反序列化时,锁处于打开状态, 而当序列化时,则忽略锁的状态。 *
Sample usages. Here is a code sketch showing how to perform * lock downgrading after updating a cache (exception handling is * particularly tricky when handling multiple locks in a non-nested * fashion): *下面是一个实例用于展示,在更新缓存时,如何从一个写锁降级为读锁( 如果锁是一个非重入的模式,则抛出异常) *
{@code * class CachedData { * Object data; * volatile boolean cacheValid;//缓冲是否有效 * final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); * * void processCachedData() { * rwl.readLock().lock(); * if (!cacheValid) { //如果缓存无效,则先释放读锁,再获取写锁 * // Must release read lock before acquiring write lock * rwl.readLock().unlock(); * rwl.writeLock().lock(); * try { //重新检查缓存是否有效,因为其他的线程也许会获取写锁,改变缓存状态 * // Recheck state because another thread might have * // acquired write lock and changed state before we did. * if (!cacheValid) { * data = ... * cacheValid = true; * } * // Downgrade by acquiring read lock before releasing write lock //在释放写锁前,获取读锁 * rwl.readLock().lock(); * } finally { * rwl.writeLock().unlock(); // Unlock write, still hold read * } * } * * try { * use(data); * } finally { * rwl.readLock().unlock(); * } * } * }}* * ReentrantReadWriteLocks can be used to improve concurrency in some * uses of some kinds of Collections. This is typically worthwhile * only when the collections are expected to be large, accessed by * more reader threads than writer threads, and entail operations with * overhead that outweighs synchronization overhead. For example, here * is a class using a TreeMap that is expected to be large and * concurrently accessed. * ReentrantReadWriteLocks被用于改善一些集合类的并发。当一个集合类的读操作量较大, 而写操作较少时,ReentrantReadWriteLocks是非常值得用的。这里是一个TreeMap,需要 大量的并发访问。 *
{@code * class RWDictionary { * private final Map* *m = new TreeMap (); * private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock(); * private final Lock r = rwl.readLock(); * private final Lock w = rwl.writeLock(); * * public Data get(String key) { * r.lock(); * try { return m.get(key); } * finally { r.unlock(); } * } * public String[] allKeys() { * r.lock(); * try { return m.keySet().toArray(); } * finally { r.unlock(); } * } * public Data put(String key, Data value) { * w.lock(); * try { return m.put(key, value); } * finally { w.unlock(); } * } * public void clear() { * w.lock(); * try { m.clear(); } * finally { w.unlock(); } * } * }}
Implementation Notes
* *This lock supports a maximum of 65535 recursive write locks
* and 65535 read locks. Attempts to exceed these limits result in
* {@link Error} throws from locking methods.
*
这个锁支持一个线程在持有读锁和写锁的情况下,可连续获取读锁和写锁的次数为
65535=2^16-1。当尝试获取锁的超过这个限制,获取锁方法将抛出错误。
* @since 1.5
* @author Doug Lea
*
*/
public class ReentrantReadWriteLock
implements ReadWriteLock, java.io.Serializable {
private static final long serialVersionUID = -6992448646407690164L;
/** Inner class providing readlock 读锁内部类 */
private final ReentrantReadWriteLock.ReadLock readerLock;
/** Inner class providing writelock 写锁内部类*/
private final ReentrantReadWriteLock.WriteLock writerLock;
/** Performs all synchronization mechanics 实现读写锁机制的同步器*/
final Sync sync;
/**
* Creates a new {@code ReentrantReadWriteLock} with
* default (nonfair) ordering properties.
*/
public ReentrantReadWriteLock() {
//默认创建的是非公平锁
this(false);
}
/**
* Creates a new {@code ReentrantReadWriteLock} with
* the given fairness policy.
*带公平性参数的构造
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantReadWriteLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
readerLock = new ReadLock(this);
writerLock = new WriteLock(this);
}
//获取读写锁
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
public ReentrantReadWriteLock.ReadLock readLock() { return readerLock; }
}
来看ReentrantReadWriteLock的内部同步器SYNC
/**
* Synchronization implementation for ReentrantReadWriteLock.
* Subclassed into fair and nonfair versions.
ReentrantReadWriteLock的同步锁的实现,有公平和非公平两个版本。
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 6317671515068378041L;
/*
* Read vs write count extraction constants and functions.
* Lock state is logically divided into two unsigned shorts:
* The lower one representing the exclusive (writer) lock hold count,
* and the upper the shared (reader) hold count.
读写锁常量,锁的状态将一个int分成两部分,低16表示互斥写锁可持有的数量,
高16位表示共享读锁,可持有的数量。
*/
static final int SHARED_SHIFT = 16;
static final int SHARED_UNIT = (1 << SHARED_SHIFT);
static final int MAX_COUNT = (1 << SHARED_SHIFT) - 1;//65535
static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;//65535
/** Returns the number of shared holds represented in count 共享读 锁数量 */
static int sharedCount(int c) { return c >>> SHARED_SHIFT; }
/** Returns the number of exclusive holds represented in count 互斥写锁数量*/
static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }
/**
* A counter for per-thread read hold counts.
* Maintained as a ThreadLocal; cached in cachedHoldCounter
每个读线程持有共享读锁的数量计数器,维持一个ThreadLocal变量,缓存在cachedHoldCounter
*/
static final class HoldCounter {
int count = 0;
// Use id, not reference, to avoid garbage retention
//用long的id,而不是reference,为了防止产生不可回收的垃圾
final long tid = Thread.currentThread().getId();
}
/**
* ThreadLocal subclass. Easiest to explicitly define for sake
* of deserialization mechanics.
线程持有锁数量
*/
static final class ThreadLocalHoldCounter
extends ThreadLocal Can outlive the Thread for which it is caching the read
* hold count, but avoids garbage retention by not retaining a
* reference to the Thread.
* 用于缓存存活线程读锁的持有量,同时避免线程引用产生的垃圾。
* Accessed via a benign data race; relies on the memory
* model's final field and out-of-thin-air guarantees.
*/
private transient HoldCounter cachedHoldCounter;
/**
* firstReader is the first thread to have acquired the read lock.
* firstReaderHoldCount is firstReader's hold count.
*第一个获取读锁的线程,和持有读锁的数量
* More precisely, firstReader is the unique thread that last
* changed the shared count from 0 to 1, and has not released the
* read lock since then; null if there is no such thread.
*第一个获取读锁的读线程,是第一个将共享锁状态从0变到1,同时没有释放读锁,没有这样的线程,则为null
* Cannot cause garbage retention unless the thread terminated
* without relinquishing its read locks, since tryReleaseShared
* sets it to null.
* 不会引起内存垃圾,由于当一个线程未放弃获取读锁,同时中断线程,从tryReleaseShared可以看到,为null
* Accessed via a benign data race; relies on the memory
* model's out-of-thin-air guarantees for references.
*
* This allows tracking of read holds for uncontended read
* locks to be very cheap.
*/
private transient Thread firstReader = null;
private transient int firstReaderHoldCount;
Sync() {
//在同步器的构造中,初始化读线程本地锁持有数量计数器
readHolds = new ThreadLocalHoldCounter();
setState(getState()); // ensures visibility of readHolds
}
/*
* Acquires and releases use the same code for fair and
* nonfair locks, but differ in whether/how they allow barging
* when queues are non-empty.
*/
获取和释放公平锁和非公平锁,我们用相同代码实现,不同的是等队列不为空时,
他们的竞争方式。
/**
* Returns true if the current thread, when trying to acquire
* the read lock, and otherwise eligible to do so, should block
* because of policy for overtaking other waiting threads.
*/
如果当前线程尝试获取读锁,根据等待线程负载策略,其他的线程成为获取的锁
的最优选择,则阻塞当前线程。
abstract boolean readerShouldBlock();
/**
* Returns true if the current thread, when trying to acquire
* the write lock, and otherwise eligible to do so, should block
* because of policy for overtaking other waiting threads.
*/
当前线程尝试获取写锁时,是否应该阻塞,根据等待线程负载策略,其他的线程成为获取的锁
的最优选择,则阻塞当前线程。
abstract boolean writerShouldBlock();
/*
* Note that tryRelease and tryAcquire can be called by
* Conditions. So it is possible that their arguments contain
* both read and write holds that are all released during a
* condition wait and re-established in tryAcquire.
*/
尝试获取和释放方法可以被Condition调用。releases参数包括
在条件等待下,重新尝试获取锁期间释放的锁。
protected final boolean tryRelease(int releases) {
if (!isHeldExclusively())
//如果非独占锁,抛出异常
throw new IllegalMonitorStateException();
int nextc = getState() - releases;
boolean free = exclusiveCount(nextc) == 0;
if (free)
//如果释放锁后,锁的状态为0,则锁处于打开状态
setExclusiveOwnerThread(null);
setState(nextc);
return free;
}
protected final boolean tryAcquire(int acquires) {
/*
* Walkthrough:
* 1. If read count nonzero or write count nonzero
* and owner is a different thread, fail.
* 2. If count would saturate, fail. (This can only
* happen if count is already nonzero.)
* 3. Otherwise, this thread is eligible for lock if
* it is either a reentrant acquire or
* queue policy allows it. If so, update state
* and set owner.
1.当读锁和写锁的数量为非零,且持有者非当前线程,获取失败;
2.当读写锁数量达到最大值65535时,后去失败
3.如果其他队列线程尝试获取锁,根据队列策略,当前线程是合格线程,
则获取成功,更新锁状态,设置锁持有者。
*/
Thread current = Thread.currentThread();
int c = getState();
int w = exclusiveCount(c);
if (c != 0) {
// (Note: if c != 0 and w == 0 then shared count != 0)
//当前锁状态不为0,且写锁不为0且当前线程非锁持有者,获取失败
if (w == 0 || current != getExclusiveOwnerThread())
return false;
//如果持有写锁数量,大于65535,抛出错误
if (w + exclusiveCount(acquires) > MAX_COUNT)
throw new Error("Maximum lock count exceeded");
// Reentrant acquire
否则更新锁状态,获取成功
//setState(c + acquires);
return true;
}
//如果锁状态为打开状态,当前线程不应该阻塞,则获取锁成功,更新写锁状态
if (writerShouldBlock() ||
!compareAndSetState(c, c + acquires))
return false;
setExclusiveOwnerThread(current);
return true;
}
//尝试释放共享锁
protected final boolean tryReleaseShared(int unused) {
Thread current = Thread.currentThread();
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
//如果第一个获取读锁的线程为当前线程,持有锁数量为1,则释放成功,否则,
//锁持有数量减1
if (firstReaderHoldCount == 1)
firstReader = null;
else
firstReaderHoldCount--;
} else {
//如果当前线程非读锁持有者
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
//如果线程持有一定数量的读锁,且非当前线程,
//从读锁计数器中,获取当前线程持有数量
rh = readHolds.get();
int count = rh.count;
if (count <= 1) {
//如果持有数量小于等于1,则从读锁计数器中移除当前线程
readHolds.remove();
if (count <= 0)
throw unmatchedUnlockException();
}
--rh.count;
}
for (;;) {
int c = getState();
int nextc = c - SHARED_UNIT;
if (compareAndSetState(c, nextc))
// Releasing the read lock has no effect on readers,
// but it may allow waiting writers to proceed if
// both read and write locks are now free.
/*释放读锁对读线程没有任何影响,对于写线程获取写锁,
需要读锁和写锁都可用。
return nextc == 0;
}
}
//不匹配打开条件
private IllegalMonitorStateException unmatchedUnlockException() {
return new IllegalMonitorStateException(
"attempt to unlock read lock, not locked by current thread");
}
//尝试获取共享锁
protected final int tryAcquireShared(int unused) {
/*
* Walkthrough:
* 1. If write lock held by another thread, fail.
* 2. Otherwise, this thread is eligible for
* lock wrt state, so ask if it should block
* because of queue policy. If not, try
* to grant by CASing state and updating count.
* Note that step does not check for reentrant
* acquires, which is postponed to full version
* to avoid having to check hold count in
* the more typical non-reentrant case.
* 3. If step 2 fails either because thread
* apparently not eligible or CAS fails or count
* saturated, chain to version with full retry loop.
1.如果写锁被其他线程持有,则失败;
2.如果持有写锁,根据队列策略,判断是否应该阻塞,如果不应该阻塞,
则尝试更新锁状态,这个过程不会检查尝试获取锁的竞争者,这个是
为了延迟full version以避免检查非重入锁的锁持有数量
3.如果第二步,失败则进入自旋等待
*/
Thread current = Thread.currentThread();
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
//如果写锁非打开状态,且当前线程非写锁持有者,则获取读锁失败。
return -1;
int r = sharedCount(c);
if (!readerShouldBlock() &&
r < MAX_COUNT &&
compareAndSetState(c, c + SHARED_UNIT)) {
//如果根据队列策略不应该阻塞,且读锁可用,更新读锁状态
if (r == 0) {
//如果是一个获取读锁的线程,则设置firstReader为当前线程
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
//如果firstReader为当前线程,则线程持有读锁数量加1
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
//如果当前线程非firstReader,从读锁缓存计数器,获取当前线程计数器,
//如果从线程技术器为null,或计数器线程id非当前线程,
//从线程读锁计数器后去,本地线程计数器,读锁持有数量+1
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return 1;
}
//否则,自旋尝试获取共享读锁
return fullTryAcquireShared(current);
}
/**
* Full version of acquire for reads, that handles CAS misses
* and reentrant reads not dealt with in tryAcquireShared.
自旋尝试获取读锁,处理CAS操作遗漏或重入的读线程没有tryAcquireShared
*/
final int fullTryAcquireShared(Thread current) {
/*
* This code is in part redundant with that in
* tryAcquireShared but is simpler overall by not
* complicating tryAcquireShared with interactions between
* retries and lazily reading hold counts.
这是tryAcquireShared的一个补充,当阻塞获取读锁时,自旋等待,延迟尝试获取读锁
和更新读锁持有者
*/
HoldCounter rh = null;
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0) {
if (getExclusiveOwnerThread() != current)
//如果写非打开状态,且非写锁持有,获取失败
return -1;
// else we hold the exclusive lock; blocking here
// would cause deadlock.
} else if (readerShouldBlock()) {
//如果应该阻塞获取读锁,则判断firstReader是否为当前线程,
//如果是,什么都不做,应为读锁是非重入的
// Make sure we're not acquiring read lock reentrantly
if (firstReader == current) {
// assert firstReaderHoldCount > 0;
} else {
if (rh == null) {
//从线程计算器缓存获取,线程计数器
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId()) {
//如果为null,且非当前线程,从读锁计数器,获取本地线程计数器
rh = readHolds.get();
if (rh.count == 0)
//如果读锁持有量为0,则从读锁计数器,移除本地计数器
readHolds.remove();
}
}
if (rh.count == 0)
return -1;
}
}
//如果线程为写锁持有者,当共享读锁达到65535时,抛出错误
if (sharedCount(c) == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
//否则获取锁成功,这一段与tryAcquireShared成功获取读锁一样,不再讲
if (sharedCount(c) == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
if (rh == null)
rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
cachedHoldCounter = rh; // cache for release
}
return 1;
}
}
}
/**
* Performs tryLock for write, enabling barging in both modes.
* This is identical in effect to tryAcquire except for lack
* of calls to writerShouldBlock.
尝试获取写锁,与tryAcquire非阻塞时的代码相同
*/
final boolean tryWriteLock() {
Thread current = Thread.currentThread();
int c = getState();
if (c != 0) {
int w = exclusiveCount(c);
if (w == 0 || current != getExclusiveOwnerThread())
//如果写锁为关闭状态,且持有者非当前线程,获取失败
return false;
if (w == MAX_COUNT)
//如果写锁持有数量为65535,则抛出错误。
throw new Error("Maximum lock count exceeded");
}
if (!compareAndSetState(c, c + 1))
//更新锁状态失败,则获取写锁失败
return false;
//设置锁持有者为当前线程。
setExclusiveOwnerThread(current);
return true;
}
/**
* Performs tryLock for read, enabling barging in both modes.
* This is identical in effect to tryAcquireShared except for
* lack of calls to readerShouldBlock.
自旋尝试获取读锁,这个与tryAcquireShared中的当线程不应该阻塞时的代码一样
*/
final boolean tryReadLock() {
Thread current = Thread.currentThread();
for (;;) {
int c = getState();
if (exclusiveCount(c) != 0 &&
getExclusiveOwnerThread() != current)
return false;
int r = sharedCount(c);
if (r == MAX_COUNT)
throw new Error("Maximum lock count exceeded");
if (compareAndSetState(c, c + SHARED_UNIT)) {
if (r == 0) {
firstReader = current;
firstReaderHoldCount = 1;
} else if (firstReader == current) {
firstReaderHoldCount++;
} else {
HoldCounter rh = cachedHoldCounter;
if (rh == null || rh.tid != current.getId())
cachedHoldCounter = rh = readHolds.get();
else if (rh.count == 0)
readHolds.set(rh);
rh.count++;
}
return true;
}
}
}
//是否是线程持有者
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
// Methods relayed to outer class
//创建条件
final ConditionObject newCondition() {
return new ConditionObject();
}
//获取写锁持有者
final Thread getOwner() {
// Must read state before owner to ensure memory consistency
return ((exclusiveCount(getState()) == 0) ?
null :
getExclusiveOwnerThread());
}
//获取读锁状态
final int getReadLockCount() {
return sharedCount(getState());
}
//是否处于写模式
final boolean isWriteLocked() {
return exclusiveCount(getState()) != 0;
}
//获取写锁状态
final int getWriteHoldCount() {
return isHeldExclusively() ? exclusiveCount(getState()) : 0;
}
//获取当前线程持有读锁的数量
final int getReadHoldCount() {
if (getReadLockCount() == 0)
return 0;
Thread current = Thread.currentThread();
if (firstReader == current)
return firstReaderHoldCount;
HoldCounter rh = cachedHoldCounter;
if (rh != null && rh.tid == current.getId())
return rh.count;
int count = readHolds.get().count;
if (count == 0) readHolds.remove();
return count;
}
/**
* Reconstitute this lock instance from a stream
* @param s the stream,反序列化
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
readHolds = new ThreadLocalHoldCounter();
//读锁计算器,为新建,锁状态为打开
setState(0); // reset to unlocked state
}
//获取锁状态
final int getCount() { return getState(); }
}
}
由于ReentrantReadWriteLock的内容较多,今天我们先讲到这,后面再讲其余部分,先来总结一下先;
总结:
Sync是ReentrantReadWriteLock实现读写锁的基础,Sync是基于AQS的实现,
内部有一个各读锁计数器(ThreadLocal),每个线程拥有自己的读写计数器,存储着线程持有读锁的数量。同时有一个缓存计数器,用于记录当前线程拥有的读锁数量。有一个firstReader用于记录第一个获取读锁的线程,firstReaderHoldCount记录第一个获取读锁线程的持有锁数量。SYNC将锁的状态int state分成两部分,分为高16位和低16位,高位表示共享读锁,低位是独占写锁;所以读锁和写锁的最大持有量为65535。线程只有在没有线程持有读锁且写锁状态为打开,即state为打开状态,或当前线程持有写锁的数量小于65535的情况下,获取写锁成功,否则失败。线程只有在其他线程没有持有写锁,且读锁的持有数量未达到65535,或当前线程持有写锁且没有读锁的持有数量未达到65535(即锁降级),则当前线程获取读锁成功,否则自旋等待。
ReentrantReadWriteLock详解后续: http://donald-draper.iteye.com/blog/2361528