- 自相关滤波详解
DuHz
线性代数矩阵信息与通信人工智能算法信号处理
自相关滤波详解自相关滤波是信号处理领域中一种重要的技术,它利用信号与其自身的相关性来提取有用信息,滤除噪声,增强特定信号特征。自相关的基本概念自相关是描述信号在不同时间点之间相似度的一个重要指标。对于一个确定性连续时间信号x(t)x(t)x(t),其自相关函数Rxx(τ)R_{xx}(\tau)Rxx(τ)定义为:Rxx(τ)=limT→∞12T∫−TTx(t)x(t+τ)dtR_{xx}(\t
- 深度视觉目标跟踪进展综述-论文笔记
pzb19841116
计算机视觉目标跟踪人工智能计算机视觉
中科大学报上的一篇综述,总结得很详细,整理了相关笔记。1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,
- 相关滤波
AI视觉网奇
视觉相关
https://zhuanlan.zhihu.com/p/39923038相关滤波的本质就是一个尺寸特别大(跟patch一样大)的cnn卷积核。所以kcf不仅可以用闭式解求解,也可以用梯度下降求解。kcf中α迭代也是用0.05的系数,很类似学习率这个东西。kcf本身的所谓缺点:边缘效应完全是由于求解需要用傅立叶变换才导致的。原因是如果不用傅立叶变换求解,而采用梯度下降求解,就不需要使得w的尺寸和图
- MOOSE相关滤波跟踪算法(个人学习笔记)
CHEN7_98
算法学习笔记
MOOSE论文标题“VisualObjectTrackingusingAdaptiveCorrelationFilters”原文地址用滤波器对目标外观进行建模,并通过卷积操作来执行跟踪。参考阅读:目标跟踪经典算法——MOSSE(MinimumOutputSumSquareError)目标跟踪整理(1)之MOSSE相关滤波跟踪原理基于以初始帧中给定的boundingbox来选择目标,并基于示例图像上
- 单目标跟踪算法SiamRPN
AAI机器之心
目标跟踪算法人工智能YOLO计算机视觉机器学习深度学习
目标跟踪算法包括单目标跟踪和多目标跟踪,单目标跟踪在每张图片中只跟踪一个目标。目前单目标跟踪的主要方法分为两大类,基于相关滤波(correlationfilter)的跟踪算法,如CSK,KCF,DCF,SRDCF等;基于深度学习的跟踪算法,如SiamFC,SiamRPN,SiamRPN++等。相比之下,相关滤波的速度更快,深度学习的准确性更高。跟踪相关算法如下:这里主要记录下对SIamRPN跟踪算
- 基于深度学习的视觉目标跟踪进展综述
pzb19841116
人工智能计算机视觉论文解读目标跟踪人工智能计算机视觉
1引言目标跟踪旨在基于初始帧中指定的感兴趣目标(一般用矩形框表示),在后续帧中对该目标进行持续的定位。基于深度学习的跟踪算法,采用的框架包括相关滤波器、分类式网络、双路网络等。处理跟踪任务的角度,分为基于匹配思路的双路网络和基于二分类的辨别式跟踪器。最初的深度跟踪算法聚焦于相关滤波器,通过深度学习的特征+相关滤波器实现。基于双路网络跟踪算法那,将跟踪视为模板匹配,抗干扰能力较差。近期基于Trans
- 【ITK库学习】使用itk库进行图像滤波ImageFilter:频域滤波
leafpipi
ITK学习计算机视觉算法图像处理c++
目录1、itkFFTConvolutionImageFilter快速傅里叶变换计算2、扩展:itkConvolutionImageFilter.h3、itkFFTShiftImageFilter频率转移滤波器4、itkFFTNormalizedCorrelationImageFilterFFT实现的归一化相关滤波器1、itkFFTConvolutionImageFilter快速傅里叶变换计算该类使
- DCFnet - Discrimitive Correlation Filters Network for Visual Tracking 笔记
橙子潘潘
摘要基于判别相关滤波器(DCF)的方法现在成为在线对象跟踪的主要方法。在本文工作中,提出一个轻量级的端到端训练的网络,DCFnet,同时学习深度特征和执行滤波过程。体来说,作者将DCF视为在Siamese网络中添加的特殊相关滤波器层,并通过将网络输出定义为对象位置的概率热图来仔细地通过它来推导反向传播。因为推导仍然在傅里叶域内进行,所以保留了DCF高效的特性。在测试时,文中的tracker能达到6
- 【跟踪器攻击】IOU Attack 代码解读
prinTao
计算机视觉深度学习人工智能
简介提出了IoU攻击,它根据当前帧和历史帧的预测IoU分数顺序生成扰动。通过降低IoU分数,所提出的攻击方法相应地降低了时间相干边界框(即对象运动)的准确性。此外,我们将学习到的扰动转移到接下来的几帧以初始化时间运动攻击。我们在最先进的深度跟踪器(即基于检测、基于相关滤波器和长期跟踪器)上验证了提议的IoU攻击。对基准数据集的大量实验表明了所提出的IoU攻击方法的有效性。源代码可在此httpsUR
- 【目标跟踪】ECO算法论文阅读:ECO: Efficient Convolution Operators for Tracking
ctrl A_ctrl C_ctrl V
#目标检测目标跟踪算法论文阅读
文章目录1.论文概要2.研究背景和动机3.相关滤波用于目标跟踪的原理4.ECO算法流程5.ECO算法创新点5.1特征降维:PCA5.2训练集简化:GMM5.3模型更新策略:间歇更新1.论文概要论文下载地址:ECO:EfficientConvolutionOperatorsforTracking发表时间:CVPR2017作者:MartinDanelljan(瑞典),目标跟踪领域的大牛官方代码:htt
- 自相关函数与互相关函数
starmier
最近做相关滤波追踪的时候,遇到了瓶颈,所以想从头到尾理一理基础知识。1、概念相关函数是描述信号X(s),Y(t)(这两个信号可以是随机的,也可以是确定的)在任意两个不同时刻s、t的取值之间的相关程度。两个信号之间的相似性大小用相关系数来衡量。定义:image.png称为变量X和Y的相关系数。若相关系数=0,则称X与Y不相关。相关系数越大,相关性越大,但肯定小于或者等于1.。相关函数分为自相关和互相
- SRDCF
aqiangdeba
完全参考知乎大佬YaqiLYU的专栏https://zhuanlan.zhihu.com/p/26417182总体来说,相关滤波类方法对快速变形和快速运动情况的跟踪效果不好。快速变形主要因为CF是模板类方法。容易跟丢这个比较好理解,前面分析了相关滤波是模板类方法,如果目标快速变形,那基于HOG的梯度模板肯定就跟不上了,如果快速变色,那基于CN的颜色模板肯定也就跟不上了。这个还和模型更新策略与更新速
- 目标跟踪检测算法(三)——相关滤波与深度学习应用
xwqh
姓名:刘帆;学号:20021210609;学院:电子工程学院转载于:https://blog.csdn.net/qq_34919792/article/details/89893433【嵌牛导读】基于相关滤波的跟踪算法,提出了与深度学习相关的应用【嵌牛鼻子】相关滤波,深度学习应用【嵌牛提问】什么是相关滤波?基于深度学习的跟踪算法有哪些?深度学习和相关滤波如何结合?【嵌牛正文】第三阶段(2012年~
- opencv跟踪学习之KCF
味千爱拉面
opencvKCF基本原理跟踪
KCF全称为KernelCorrelationFilter核相关滤波算法。相关滤波算法算是判别式跟踪,主要是通过核相关滤波器使用给出的样本去训练一个判别分类器,判断跟踪到的是目标还是周围的背景信息。主要使用轮转矩阵对样本进行采集,使用快速傅里叶变化对算法进行加速计算。相关滤波器是根据之前的MOSSE算法改进的,可以说是后来CSK、STC、ColorAttributes等tracker的鼻祖。Cor
- 【Opencv】视频跟踪算法KCF
颢师傅
c++计算机视觉opencv音视频算法
目录KCF算法简介opencv实现代码c++opencv实现代码pythonKCF算法简介KCF(KernelizedCorrelationFilter)是一种基于核相关滤波器的目标跟踪算法。它通过学习目标的外观特征和使用核相关滤波器进行目标定位。KCF属于传统算法的单目标跟踪器。下面是对KCF跟踪算法的介绍:目标特征提取:KCF算法使用HOG(HistogramofOrientedGradien
- 传统计算机视觉
Debroon
#机器学习计算机视觉人工智能
传统计算机视觉计算机视觉难点图像分割基于主动轮廓的图像分割基于水平集的图像分割交互式图像分割基于模型的运动分割目标跟踪基于光流的点目标跟踪基于均值漂移的块目标跟踪基于粒子滤波的目标跟踪基于核相关滤波的目标跟踪目标检测一般目标检测识别之特征一般目标检测识别之分类器基于模型拟合的目标检测,i]k8+=<*I计算机视觉难点图像分割基于主动轮廓的图像分割基于水平集的图像分割交互式图像分割基于模型的运动分割
- 【学习笔记】视频检测方法调研
8倍
学习笔记汇总学习笔记
目录1引言2方法2.1视频目标跟踪2.1.1生成式模型方法2.1.2判别式模型方法2.1.2.1基于相关滤波跟踪2.1.2.2基于深度学习跟踪2.2视频异常检测2.2.1基于重构方法2.2.2基于预测方法2.2.3基于分类方法2.2.4基于回归方法2.3深度伪造人脸视频检测2.3.1基于RNN时空融合特征检测2.3.2基于卷积时空融合特征检测2.3.3基于像素位移时空融合特征检测2.4异常行为识别
- 射频通信接收机设计的主要结构
32RayZer
网络
【导读】在一个射频通信系统中,噪声,尤其是信噪比(SNR),是无线接收机中的一个基本问题。高噪声电平会限制系统的容量、覆盖范围,以及许多对系统运营商和终端用户都有重大影响的相关特性。射频通信接收机是射频电路中比较重要的一部分,射它能在频信号经天线接收后,经过相关滤波器和放大器,将射频信号进行一系列的频率变化,最终将信号调节成所需要的调制信号。在一个射频通信系统中,噪声,尤其是信噪比(SNR),是无
- Sallen-Key低通滤波器设计
32RayZer
社交电子
01Sallen-Key滤波器一、背景介绍近期由于需要测试所搭建的高阻抗信号源放大电路,其中包括有低通滤波器,所以研究了Sallen-Keytopology[1]相关滤波电路电路。如下是KennthA.Kuhn在2016给出的Sallen-KeyLow-PassFilter[2]设想步骤;2002年TI给出的AnalysisoftheSallen-KeyArchitecture[3]应用报告,给出
- 计算某一时间段内采样信号最小值、最大值、平均值(梯形图+SCL代码)
RXXW_Dor
经典控制工程应用算法PLC自动控制闭环控制
信号采样和平均值滤波相关内容请参看下面博客文章:S7-200SMARTPLC信号处理系列之滑动平均值滤波FB_西门子200smart写fb_RXXW_Dor的博客-CSDN博客PLC相关滤波算法,专栏有很多详细讲解这里不再赘述。滑动平均值滤波和算术平均值滤波专栏也有文章讲解,大家可以查看相应文章。关于SMARTPLC的指针应用可以查看下面这篇博客:SMARTPLC指针_RXXW_Dor的博客-CS
- 【深度学习知识点】常见目标跟踪算法及实现代码
CODER8R
深度学习计算机视觉算法深度学习目标跟踪计算机视觉目标检测
目标跟踪算法是人工智能领域中的重要研究方向之一。目标跟踪算法可以通过分析视频或图像中的物体运动,实现对物体的跟踪和识别。这种技术被广泛应用于视频监控、自动驾驶、无人机、物体检测、人脸识别等领域。目标跟踪算法可以分为基于传统机器学习的算法和基于深度学习的算法两种类型。本文将介绍基于传统机器学习的目标跟踪算法中的KCF算法。KCF算法是一种使用核函数的基于相关滤波器的目标跟踪算法。KCF算法的核心思想
- opencv 中如何对多个运动目标进行跟踪及统计?
爱吃饼干的熊猫
opencv计算机视觉人工智能
OpenCV中提供了多种多目标跟踪算法的实现,包括以下几种:1.KCF(KernelizedCorrelationFilters)跟踪算法:基于核相关滤波(CorrelationFilter)的目标跟踪算法,具有快速、准确、鲁棒的特点。2.MOSSE(MinimumOutputSumofSquaredError)跟踪算法:也是基于核相关滤波的目标跟踪算法,与KCF算法类似,但是计算速度更快。3.C
- C++实现三种滤波算法(过程详细)
星如雪_梭如月
c++开发语言pythonstm32算法
目录1写在前面2数据导入(c++)3滤波处理3.1处理前准备3.2均值滤波3.3中值滤波3.4一阶高斯滤波4导出数据5滤波效果展示5.1原数据成像5.2均值滤波5.3中值滤波5.4一阶高斯滤波1写在前面由于本人并未了解过代码优化相关知识,因此本文代码仅是能够实现滤波算法的功能,可能效率会低一点,效果验证通过Python语言。代码根据相关滤波算法定义而写。2数据导入(c++)数据为csv文件(三轴加
- (SPBACF)Robust Scalable Part-Based Visual Tracking for UAV with Background-Aware Correlation Filter
fjswcjswzy
目标跟踪计算机视觉目标跟踪相关滤波
文章目录1主要贡献2公式分析原文链接:https://ieeexplore.ieee.org/document/8665251原文代码:https://github.com/vision4robotics/SPBACF-Tracker1主要贡献该算法将要跟踪的对象最初划分成多个部分,并且不同的背景感知相关滤波器分别应用于这些划分的对象部分。提出了一种有效的具有结构比较和贝叶斯推断的从粗到细策略,用
- Deep Learning for Visual Tracking: AComprehensive Survey基于深度学习的视觉跟踪
嗯呢嗯呢
深度学习pythonpytorch深度学习
论文地址:https://arxiv.org/pdf/1912.00535.pdf摘要研究当前基于深度学习的可视化跟踪方法、基准数据集和评价指标。从9个关键方面总结了基于深度学习方法的基本特征、主要动机和贡献:网络架构、网络开发、视觉跟踪的网络训练、网络目标、网络输出、相关滤波器开发、鸟瞰跟踪、长期跟踪、在线跟踪。引言视觉跟踪:由目标初始状态估计未知的视觉目标的轨迹。应用自动驾驶汽车[1],自主机
- 相关滤波的视觉目标跟踪算法学习
qq_38269141
视觉计算机视觉目标跟踪算法
相关滤波的视觉目标跟踪算法学习内容1.视觉目标跟踪的难点:①训练数据有限。通用目标跟踪任务中,目标先验知识缺乏,仅有目标初始位置信息。②目标不确定性。跟踪过程中,随着目标尺寸、形状以及姿态等变化,其外观模型存在明显差异;多目标跟踪任务中,当目标进出视野或者完全遮挡时,目标数量存在不确定性。③场景复杂性。在实际场景中存在光照变化、背景杂乱、遮挡以及图像分辨率低等挑战2.视觉目标跟踪算法主体框架:①运
- 商汤科技 & 中科院自动化所:视觉跟踪之端到端的光流相关滤波 | CVPR 2018
PaperWeekly
作者丨朱政学校丨中科院自动化所博士生单位丨商汤科技研究方向丨视觉目标跟踪及其在机器人中的应用本文主要介绍我们发表于CVPR2018上的一篇文章:一种端到端的光流相关滤波跟踪算法。据我们所知,这是第一篇把Flow提取和tracking任务统一在一个网络里面的工作。■论文|End-to-endFlowCorrelationTrackingwithSpatial-temporalAttention■链接
- 2021-07-06 win10下Anaconda+VScode+pytorch环境搭建
weixin_42113506
vscodepytorchide
一、前言 说来惭愧,作为一个985研究生,居然到了研三才开始接触基于深度学习tracking,之前一直在弄相关滤波,玩是玩明白了,就是没弄出个名堂。眼瞅着要毕业了,这不上点深度学习,到时候又要被扣一个创新性不足的帽子。那就从现在开始,记录一下自己的学习历程吧。二、正文 师兄留下的机器是linux的,但自己习惯了win10,为了看代码方便,还是得在自己的电脑上搭个环境。用的是VScode+Pytor
- SiamRPN论文学习笔记(上)
forever compass
学习计算机视觉深度学习
SiamRPN论文学习笔记(上)引言SiamRPN的网络结构孪生子网络部分区域候选子网络部分RPN的诞生区域候选子网络训练阶段两阶段训练anchors尺寸设置分类分支中anchors正负例选取策略损失函数的选取将单目标检测策略应用到跟踪中引言在目标跟踪领域,孪生网络方法与相关滤波方法是最重要、应用最多的两类方法。在我的上一篇文章中,对孪生网络系列开山之作——SiamFC论文中的主要理论知识进行了简
- 面向无人机的视觉目标跟踪算法:综述与展望
米朵儿技术屋
数字化转型及信息化建设专栏算法目标跟踪人工智能
摘要:近年来,无人机因其小巧灵活、智能自主等特点被广泛应用于民用和军事等领域中,特别是搜索侦察过程中首要的目标跟踪任务。无人机视觉目标跟踪场景的复杂性和运动目标的多变性,使得目标特征提取及模型建立困难,对目标跟踪性能带来巨大的挑战。本文首先介绍了无人机视觉目标跟踪的研究现状,梳理了经典和最新的目标跟踪算法,特别是基于相关滤波的跟踪算法和基于深度学习的跟踪算法,并对比了不同算法的优缺点。其次,归纳了
- 多线程编程之join()方法
周凡杨
javaJOIN多线程编程线程
现实生活中,有些工作是需要团队中成员依次完成的,这就涉及到了一个顺序问题。现在有T1、T2、T3三个工人,如何保证T2在T1执行完后执行,T3在T2执行完后执行?问题分析:首先问题中有三个实体,T1、T2、T3, 因为是多线程编程,所以都要设计成线程类。关键是怎么保证线程能依次执行完呢?
Java实现过程如下:
public class T1 implements Runnabl
- java中switch的使用
bingyingao
javaenumbreakcontinue
java中的switch仅支持case条件仅支持int、enum两种类型。
用enum的时候,不能直接写下列形式。
switch (timeType) {
case ProdtransTimeTypeEnum.DAILY:
break;
default:
br
- hive having count 不能去重
daizj
hive去重having count计数
hive在使用having count()是,不支持去重计数
hive (default)> select imei from t_test_phonenum where ds=20150701 group by imei having count(distinct phone_num)>1 limit 10;
FAILED: SemanticExcep
- WebSphere对JSP的缓存
周凡杨
WAS JSP 缓存
对于线网上的工程,更新JSP到WebSphere后,有时会出现修改的jsp没有起作用,特别是改变了某jsp的样式后,在页面中没看到效果,这主要就是由于websphere中缓存的缘故,这就要清除WebSphere中jsp缓存。要清除WebSphere中JSP的缓存,就要找到WAS安装后的根目录。
现服务
- 设计模式总结
朱辉辉33
java设计模式
1.工厂模式
1.1 工厂方法模式 (由一个工厂类管理构造方法)
1.1.1普通工厂模式(一个工厂类中只有一个方法)
1.1.2多工厂模式(一个工厂类中有多个方法)
1.1.3静态工厂模式(将工厂类中的方法变成静态方法)
&n
- 实例:供应商管理报表需求调研报告
老A不折腾
finereport报表系统报表软件信息化选型
引言
随着企业集团的生产规模扩张,为支撑全球供应链管理,对于供应商的管理和采购过程的监控已经不局限于简单的交付以及价格的管理,目前采购及供应商管理各个环节的操作分别在不同的系统下进行,而各个数据源都独立存在,无法提供统一的数据支持;因此,为了实现对于数据分析以提供采购决策,建立报表体系成为必须。 业务目标
1、通过报表为采购决策提供数据分析与支撑
2、对供应商进行综合评估以及管理,合理管理和
- mysql
林鹤霄
转载源:http://blog.sina.com.cn/s/blog_4f925fc30100rx5l.html
mysql -uroot -p
ERROR 1045 (28000): Access denied for user 'root'@'localhost' (using password: YES)
[root@centos var]# service mysql
- Linux下多线程堆栈查看工具(pstree、ps、pstack)
aigo
linux
原文:http://blog.csdn.net/yfkiss/article/details/6729364
1. pstree
pstree以树结构显示进程$ pstree -p work | grep adsshd(22669)---bash(22670)---ad_preprocess(4551)-+-{ad_preprocess}(4552) &n
- html input与textarea 值改变事件
alxw4616
JavaScript
// 文本输入框(input) 文本域(textarea)值改变事件
// onpropertychange(IE) oninput(w3c)
$('input,textarea').on('propertychange input', function(event) {
console.log($(this).val())
});
- String类的基本用法
百合不是茶
String
字符串的用法;
// 根据字节数组创建字符串
byte[] by = { 'a', 'b', 'c', 'd' };
String newByteString = new String(by);
1,length() 获取字符串的长度
&nbs
- JDK1.5 Semaphore实例
bijian1013
javathreadjava多线程Semaphore
Semaphore类
一个计数信号量。从概念上讲,信号量维护了一个许可集合。如有必要,在许可可用前会阻塞每一个 acquire(),然后再获取该许可。每个 release() 添加一个许可,从而可能释放一个正在阻塞的获取者。但是,不使用实际的许可对象,Semaphore 只对可用许可的号码进行计数,并采取相应的行动。
S
- 使用GZip来压缩传输量
bijian1013
javaGZip
启动GZip压缩要用到一个开源的Filter:PJL Compressing Filter。这个Filter自1.5.0开始该工程开始构建于JDK5.0,因此在JDK1.4环境下只能使用1.4.6。
PJL Compressi
- 【Java范型三】Java范型详解之范型类型通配符
bit1129
java
定义如下一个简单的范型类,
package com.tom.lang.generics;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value = value;
}
}
- 【Hadoop十二】HDFS常用命令
bit1129
hadoop
1. 修改日志文件查看器
hdfs oev -i edits_0000000000000000081-0000000000000000089 -o edits.xml
cat edits.xml
修改日志文件转储为xml格式的edits.xml文件,其中每条RECORD就是一个操作事务日志
2. fsimage查看HDFS中的块信息等
&nb
- 怎样区别nginx中rewrite时break和last
ronin47
在使用nginx配置rewrite中经常会遇到有的地方用last并不能工作,换成break就可以,其中的原理是对于根目录的理解有所区别,按我的测试结果大致是这样的。
location /
{
proxy_pass http://test;
- java-21.中兴面试题 输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 , 使其和等于 m
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
import java.util.Stack;
public class CombinationToSum {
/*
第21 题
2010 年中兴面试题
编程求解:
输入两个整数 n 和 m ,从数列 1 , 2 , 3.......n 中随意取几个数 ,
使其和等
- eclipse svn 帐号密码修改问题
开窍的石头
eclipseSVNsvn帐号密码修改
问题描述:
Eclipse的SVN插件Subclipse做得很好,在svn操作方面提供了很强大丰富的功能。但到目前为止,该插件对svn用户的概念极为淡薄,不但不能方便地切换用户,而且一旦用户的帐号、密码保存之后,就无法再变更了。
解决思路:
删除subclipse记录的帐号、密码信息,重新输入
- [电子商务]传统商务活动与互联网的结合
comsci
电子商务
某一个传统名牌产品,过去销售的地点就在某些特定的地区和阶层,现在进入互联网之后,用户的数量群突然扩大了无数倍,但是,这种产品潜在的劣势也被放大了无数倍,这种销售利润与经营风险同步放大的效应,在最近几年将会频繁出现。。。。
如何避免销售量和利润率增加的
- java 解析 properties-使用 Properties-可以指定配置文件路径
cuityang
javaproperties
#mq
xdr.mq.url=tcp://192.168.100.15:61618;
import java.io.IOException;
import java.util.Properties;
public class Test {
String conf = "log4j.properties";
private static final
- Java核心问题集锦
darrenzhu
java基础核心难点
注意,这里的参考文章基本来自Effective Java和jdk源码
1)ConcurrentModificationException
当你用for each遍历一个list时,如果你在循环主体代码中修改list中的元素,将会得到这个Exception,解决的办法是:
1)用listIterator, 它支持在遍历的过程中修改元素,
2)不用listIterator, new一个
- 1分钟学会Markdown语法
dcj3sjt126com
markdown
markdown 简明语法 基本符号
*,-,+ 3个符号效果都一样,这3个符号被称为 Markdown符号
空白行表示另起一个段落
`是表示inline代码,tab是用来标记 代码段,分别对应html的code,pre标签
换行
单一段落( <p>) 用一个空白行
连续两个空格 会变成一个 <br>
连续3个符号,然后是空行
- Gson使用二(GsonBuilder)
eksliang
jsongsonGsonBuilder
转载请出自出处:http://eksliang.iteye.com/blog/2175473 一.概述
GsonBuilder用来定制java跟json之间的转换格式
二.基本使用
实体测试类:
温馨提示:默认情况下@Expose注解是不起作用的,除非你用GsonBuilder创建Gson的时候调用了GsonBuilder.excludeField
- 报ClassNotFoundException: Didn't find class "...Activity" on path: DexPathList
gundumw100
android
有一个工程,本来运行是正常的,我想把它移植到另一台PC上,结果报:
java.lang.RuntimeException: Unable to instantiate activity ComponentInfo{com.mobovip.bgr/com.mobovip.bgr.MainActivity}: java.lang.ClassNotFoundException: Didn't f
- JavaWeb之JSP指令
ihuning
javaweb
要点
JSP指令简介
page指令
include指令
JSP指令简介
JSP指令(directive)是为JSP引擎而设计的,它们并不直接产生任何可见输出,而只是告诉引擎如何处理JSP页面中的其余部分。
JSP指令的基本语法格式:
<%@ 指令 属性名="
- mac上编译FFmpeg跑ios
啸笑天
ffmpeg
1、下载文件:https://github.com/libav/gas-preprocessor, 复制gas-preprocessor.pl到/usr/local/bin/下, 修改文件权限:chmod 777 /usr/local/bin/gas-preprocessor.pl
2、安装yasm-1.2.0
curl http://www.tortall.net/projects/yasm
- sql mysql oracle中字符串连接
macroli
oraclesqlmysqlSQL Server
有的时候,我们有需要将由不同栏位获得的资料串连在一起。每一种资料库都有提供方法来达到这个目的:
MySQL: CONCAT()
Oracle: CONCAT(), ||
SQL Server: +
CONCAT() 的语法如下:
Mysql 中 CONCAT(字串1, 字串2, 字串3, ...): 将字串1、字串2、字串3,等字串连在一起。
请注意,Oracle的CON
- Git fatal: unab SSL certificate problem: unable to get local issuer ce rtificate
qiaolevip
学习永无止境每天进步一点点git纵观千象
// 报错如下:
$ git pull origin master
fatal: unable to access 'https://git.xxx.com/': SSL certificate problem: unable to get local issuer ce
rtificate
// 原因:
由于git最新版默认使用ssl安全验证,但是我们是使用的git未设
- windows命令行设置wifi
surfingll
windowswifi笔记本wifi
还没有讨厌无线wifi的无尽广告么,还在耐心等待它慢慢启动么
教你命令行设置 笔记本电脑wifi:
1、开启wifi命令
netsh wlan set hostednetwork mode=allow ssid=surf8 key=bb123456
netsh wlan start hostednetwork
pause
其中pause是等待输入,可以去掉
2、
- Linux(Ubuntu)下安装sysv-rc-conf
wmlJava
linuxubuntusysv-rc-conf
安装:sudo apt-get install sysv-rc-conf 使用:sudo sysv-rc-conf
操作界面十分简洁,你可以用鼠标点击,也可以用键盘方向键定位,用空格键选择,用Ctrl+N翻下一页,用Ctrl+P翻上一页,用Q退出。
背景知识
sysv-rc-conf是一个强大的服务管理程序,群众的意见是sysv-rc-conf比chkconf
- svn切换环境,重发布应用多了javaee标签前缀
zengshaotao
javaee
更换了开发环境,从杭州,改变到了上海。svn的地址肯定要切换的,切换之前需要将原svn自带的.svn文件信息删除,可手动删除,也可通过废弃原来的svn位置提示删除.svn时删除。
然后就是按照最新的svn地址和规范建立相关的目录信息,再将原来的纯代码信息上传到新的环境。然后再重新检出,这样每次修改后就可以看到哪些文件被修改过,这对于增量发布的规范特别有用。
检出