1.
1.1删除方差低的特征
举个栗子,假如我们有一个是布尔值的特征,我们想去删去0(或1)个数大于总数的80%。
偏差var[x]=p(1-p)
所以我们赋值threshold为0.8*(1-0.8)
>>> from sklearn.feature_selection import VarianceThreshold >>> X = [[0, 0, 1], [0, 1, 0], [1, 0, 0], [0, 1, 1], [0, 1, 0], [0, 1, 1]] >>> sel = VarianceThreshold(threshold=(.8 * (1 - .8))) >>> sel.fit_transform(X) array([[0, 1], [1, 0], [0, 0], [1, 1], [1, 0], [1, 1]])
1.2 选择特征中最好的k个
>>> from sklearn.datasets import load_iris >>> from sklearn.feature_selection import SelectKBest >>> from sklearn.feature_selection import chi2 >>> iris = load_iris() >>> X, y = iris.data, iris.target >>> X.shape (150, 4) >>> X_new = SelectKBest(chi2, k=2).fit_transform(X, y) >>> X_new.shape (150, 2)
f_regression
chi2
or f_classif
2.1 REF
包裹式特征选择直接把最终将要使用的学习器性能作为特征子集的评价标准,换而言之选择出了最有利于学习器性能发挥量身定做的特征子集。包裹式特征选择比过滤式特征选择更好,但由于需要在特征选择的过程中多次训练学习器,故计算开销较大。
LVW(Las Vegas Wrapper)使用随机策略来进行子集搜索。以最终分类器的误差为特征子集的评价标准。交叉验证的方法来估计学习器的误差,不断的随机选择特征子集进行子集更新,直到停止条件满足不再进行子集更新。
from sklearn.svm import SVC
from sklearn.datasets import load_digits
from sklearn.feature_selection import RFE
# Load the digits dataset
digits = load_digits()
X = digits.images.reshape((len(digits.images), -1))
y = digits.target
# Create the RFE object and rank each pixel
svc = SVC(kernel="linear", C=1)
rfe = RFE(estimator=svc, n_features_to_select=50, step=1)
rfe.fit(X, y)
x=rfe.fit_transform(X,y)
x.shape
(1797L, 50L)
2.2 REFCV (交叉验证版的REF)
from sklearn.cross_validation import StratifiedKFold
from sklearn.feature_selection import RFECV
from sklearn.svm import SVC
from sklearn.datasets import load_digits
data=load_iris()
x=data.data
y=data.target
svc = SVC(kernel="linear")
# The "accuracy" scoring is proportional to the number of correct
# classifications
rfecv = RFECV(estimator=svc, step=1, cv=StratifiedKFold(y, 2),
scoring='accuracy')
rfecv.fit(x, y)
SelectFromModel
3.1 以L1为基的特征选择
L1可以稀疏系数,用feature_selection.SelectFromModel可以选择不是0的系数
>>> from sklearn.svm import LinearSVC >>> from sklearn.datasets import load_iris >>> from sklearn.feature_selection import SelectFromModel >>> iris = load_iris() >>> X, y = iris.data, iris.target >>> X.shape (150, 4) >>> lsvc = LinearSVC(C=0.01, penalty="l1", dual=False).fit(X, y) >>> model = SelectFromModel(lsvc, prefit=True) >>> X_new = model.transform(X) >>> X_new.shape (150, 3)
3.2 树模型为基础的特征选择
树或森林可以计算特征的重要性,feature_selection.SelectFromModel可以选择出重要性大的特征
>>> from sklearn.ensemble import ExtraTreesClassifier >>> from sklearn.datasets import load_iris >>> from sklearn.feature_selection import SelectFromModel >>> iris = load_iris() >>> X, y = iris.data, iris.target >>> X.shape (150, 4) >>> clf = ExtraTreesClassifier() >>> clf = clf.fit(X, y) >>> clf.feature_importances_ array([ 0.04..., 0.05..., 0.4..., 0.4...]) >>> model = SelectFromModel(clf, prefit=True) >>> X_new = model.transform(X) >>> X_new.shape (150, 2)
sklearn官方文档 http://scikit-learn.org/0.17/modules/feature_selection.html#feature-selection